240 likes | 523 Views
DESAIN ALUR NAVIGASI. Pemahaman mendasar tentang perilaku kapal diperlukan dalam mendesain sebuah alur navigasi di pelabuhan .
E N D
DESAIN ALUR NAVIGASI • Pemahamanmendasartentangperilakukapaldiperlukandalammendesainsebuahalurnavigasidipelabuhan. • Alurnavigasiharuscukupdalambagikapaluntukmasuk (penambahankedalaman air dapatdilakukandenganpengerukandasarlautataupembatasanwaktubuatkapalbertransithanyapadasaatelevasipermukaan air pasang) • Kapal paling mudahbermanuverpadasaatkecepatankapaltinggi (5 knots ataulebih), tetapisaatmemasukialurnavigasi, kapalharusberjalanlebihlambatataubahkanberhenti.
DESAIN ALUR NAVIGASI • Kapalmemerlukanbantuankapalseret (tug) padasaatbernavigasi (kapaldalamkecepatanrendah) • Masihmemungkinkantidaktercapainyakondisi yang amanuntukkapalbermanuverpadakecepatanrendahdisaatkondisiangin, gelombangdanarusmelewati batas kritisnya. • Kapal-kapal yang berlayar melewati satu dengan lainnya dapat memberikan beban hidrodinamika yang besar terhadap satu sama lain.
PENDEKATAN DALAM DESAIN ALUR NAVIGASI • Identifikasi/pilihkarakteristikkapaldesain (ukurankapal, DWT, loaded draft, loaded displacement, GRT) • Defenisikankondisilingkungan (kondisikedalaman air, pasang, arus, gelombang, dananginmemilikipengaruhlangsungpadakemampuankapaluntukbermanuver) • Tentukankecepatankapal, kebutuhanakanbantuankapalseretdanprosedurbermanuverlainnya. • Perkirakankedalamanalur yang diperlukan
PENDEKATAN DALAM DESAIN ALUR NAVIGASI 5. Perkirakankebutuhanlebaralur 6. Tampilkanalurpada data batimetri yang ada 7. Melakukansimulasigerakkapaldenganmenggunakandimensialur 8. Tentukanbantuan-bantuannavigasi yang diperlukan 9. Tentukankuantitasalur, biayapengerukandananalisakelayakanekonomi.
KONDISI LINGKUNGAN • Kedalaman Air Alur yang dipilihbiasanyamemilikikedalaman air yang secaraalamibesaruntukmenghindaribiayaawalsertabiayapengerukan yang tinggidalamjangkawaktu yang panjang. 2. Permukaan Air MHHW, MHW, MSL, MLW, MLLW
KONDISI LINGKUNGAN 3. Angin Direpresentasikandalam wind rose 4. Gelombang DirepresentasikandalamGrafikDistribusiTinggidanPeriode Gelombang Terhadap Persentase Terjadinya, dan dalam Grafik Periode Berulang (Return Periode) dengan Tinggi Gelombang Signifikan (Wave Height Significant Hs)
KONDISI LINGKUNGAN 5. Arus Dilakukansimulasiuntukmemodelkanarusdisekitardaerahpelabuhan. Arusbisaberasaldaripasangsurutatauakibatadanyasungai. • Visibility Visibility yang burukakibatkabutataucuacaburuk
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • KedalamanAlur (Channel Depth) Loaded Vessel Draft + Squat + Wave Induced Motion + Safety Clearance + Dredging Tolerance + Advanced Maintenance Dredging
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) Squat : • increase with the square of the forward speed • Increase as underkeelclearaence is reduced • Large for width-constricted channels than for open areas • Permanent International Association of Navigation Congresses (PIANC)
SHIP CHARACTERISTIC • LBP = Length Between Perpendicular • LOA = Length Overall
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) Wave Induced Motion (Headland 1995) : • Six-degree-of-freedom ship motion • Accounts for forward motion and shallow water effects • Frequency-domain computation to compute vessel motions in wave spectra • Maximum vertical excursions of the vessel for various sea states (significant wave height, mean wave period, and wave angle relative to vessel heading)
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) Zmax = maximum vertical motion amplitude m0 = zero spectral moment of the vertical motion = RMS2
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) Safety Clearance: • Distance between the lowest calculated position of a vessel’s hull and the channel bottom • Soft material on the channel bed (safety clearance : 0.6m) • Hard material or clay bottom (safety clearance : 1.2 m)
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) Dredging Tolerance: • 0.3 – 0.6 m ditambahkanuntukperkiraan loss (ketidakakuratan) padasaatpengerukan Advanced Maintenance Dredging: • Untukdaerah yang cenderungterjadisedimentasiataupenumpukan • Menambahwaktuantarjadwalpengerukan • Perlunya survey hidrografi yang berkalauntukmengevaluasikeperluanpengerukan
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • LebarAlur (Channel Width) Maneuvering Lane + Ship Clearance Lane + Bank Clearance Bergantungpadafaktor : • Kecepatankapal • Angin yang melintang (cross winds) • Arus yang melintang (cross currents) • Arus yang membujur (longitudinal current) • TinggidanPanjangGelombangSignifikan
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • Bantuanuntuknavigasi • Permukaandasar • Kedalamanperairan • Tingkat keberbahayaanbarangmuatan • Kerapatanlalulintaskapal • PIANC method : One-way channel Two-way channel
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • Basic Maneuvering Lane: Yaw = 5%, additional maneuvering lane = 0.5B
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • Ship Clearance Lane: Menghindariinteraksiantarkapalsepertibebanhidrodinamikpadaduakapal yang berdekatan.
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • Bank Clearance Lane: Menghindariefekpengisapanakibataliran air yang asimetris
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) • Bank Clearance Lane:
DESIGN METHOD (U.S. Army Corps of Engineers 1965,1983, National Ports Council 1975) Bends: • Bergantungpadafaktor : radius tikungan, panjangkapal, kecepatankapaldanbesarsuduttikungan. • Minimum radius tikungan yang harusdipenuhi : 8L – 10L, L adalahpanjangkapal • Tabelkebergantungtambahanlebaralurberdasarkan USACE: