1 / 24

A Tableaux Decision Procedure for SHOIQ

A Tableaux Decision Procedure for SHOIQ. Ian Horrocks and Ulrike Sattler <horrocks|sattler@cs.man.ac.uk> University of Manchester Manchester, UK. SHOIQ : the Final Frontier. Ian Horrocks and Ulrike Sattler <horrocks|sattler@cs.man.ac.uk> University of Manchester Manchester, UK.

cala
Download Presentation

A Tableaux Decision Procedure for SHOIQ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Tableaux Decision Procedure for SHOIQ Ian Horrocks and Ulrike Sattler <horrocks|sattler@cs.man.ac.uk> University of Manchester Manchester, UK

  2. SHOIQ: the Final Frontier Ian Horrocks and Ulrike Sattler <horrocks|sattler@cs.man.ac.uk> University of Manchester Manchester, UK

  3. Introduction to Description Logics

  4. What Are Description Logics? • A family of logic based Knowledge Representation formalisms • Descendants of semantic networks and KL-ONE • Describe domain in terms of concepts (classes), roles (properties, relationships) and individuals • Distinguished by: • Formal semantics (typically model theoretic) • Decidable fragments of FOL (often contained in C2) • Closely related to Propositional Modal & Dynamic Logics • Closely related to Guarded Fragment • Provision of inference services • Decision procedures for key problems (satisfiability, subsumption, etc) • Implemented systems (highly optimised)

  5. Applications of DLs • Databases • Ontologies (knowledge bases) • OWL Lite Web Ontology Language based on SHIF • OWL DL Web Ontology Language based on SHOIN • Motivation for OWL design was to exploit results of DL research: • Well defined semantics • Formal properties well understood (complexity, decidability) • Known tableaux decision procedures and implemented systems But not for SHOIN(up until now)

  6. DL Basics • Concepts (unary predicates/formulae with one free variable) • E.g., Person, Doctor, HappyParent, Doctor t Lawyer • Roles (binary predicates/formulae with two free variables) • E.g., hasChild, loves, (hasBrother±hasDaughter) • Individual names (constants) • E.g., John, Mary, Italy • Operators (for forming concepts and roles) restricted so that: • Language is decidable and, if possible, of low complexity • No need for explicit use of variables • Restricted form of 9 and 8 (direct correspondence with ◊ and []) • Features such as counting can be succinctly expressed

  7. The DL Family (1) • Smallest propositionally closed DL is ALC (equiv modal K(m)) • Concepts constructed using booleans u, t, :, plus restricted quantifiers 9, 8 • Only atomic roles E.g., Person all of whose children are either Doctors or have a child who is a Doctor: Person u8hasChild.(Doctor t 9hasChild.Doctor)

  8. The DL Family (2) • S often used for ALC with transitive roles (R+) • Additional letters indicate other extension, e.g.: • H for role hierarchy (e.g., hasDaughter v hasChild) • O for nominals/singleton classes (e.g., {Italy}) • I for inverse roles (e.g., isChildOf ´ hasChild–) • N for number restrictions (e.g., >2hasChild, 63hasChild) • Q for qualified number restrictions (e.g., >2hasChild.Doctor) • ALC + R+ + role hierarchy + nominals + inverse + QNR = SHOIQ

  9. Knowledge Bases (Ontologies) • A TBox is a set of “schema” axioms (sentences), e.g.: {Doctor v Person, HappyParent´Person u8hasChild.(Doctor t 9hasChild.Doctor)} • An ABox is a set of “data” axioms (ground facts), e.g.: {John:HappyParent, John hasChild Mary} • A Knowledge Base (KB) is a TBox plus and ABox • An ontology is usually taken to be equiv. to a TBox • But in OWL, an ontology is an arbitrary set of axioms (i.e., equiv. to a KB)

  10. Description Logic Reasoning

  11. Tableaux Reasoning (1) • Key reasoning tasks reducible to KB (un)satisfiability • E.g., C v D w.r.t. KB K iff K[ {x:(C u:D)} is not satisfiable • State of the art DL systems typically use (highly optimised) tableaux algorithms to decide satisfiability (consistency) of KB • Tableaux algorithms work by trying to construct a concrete example (model) consistent with KB axioms: • Start from ground facts (ABox axioms) • Explicate structure implied by complex concepts and TBox axioms • Syntactic decomposition using tableaux expansion rules • Infer constraints on (elements of) model

  12. Tableaux Reasoning (2) • E.g., KB: {HappyParent´Person u8hasChild.(Doctor t 9hasChild.Doctor), John:HappyParent, John hasChild Mary, Mary:: Doctor Wendy hasChild Mary, Wendy marriedTo John} Person 8hasChild.(Doctor t 9hasChild.Doctor)

  13. Tableaux Reasoning (3) • Tableau rules correspond to constructors in logic (u, 9 etc) • E.g., John:(Person u Doctor) --!John:Person andJohn:Doctor • Stop when no more rules applicable or clash occurs • Clash is an obvious contradiction, e.g., A(x), :A(x) • Some rules are nondeterministic (e.g., t, 6) • In practice, this means search • Cycle check (blocking) often needed to ensure termination • E.g., KB: {Personv9hasParent.Person, John:Person}

  14. Tableaux Reasoning (4) • In general, (representation of) model consists of: • Named individuals forming arbitrary directed graph • Trees of anonymous individuals rooted in named individuals

  15. Decision Procedure • Algorithm is a decision procedure, i.e., KB is satisfiable iff rules can be applied such that fully expanded clash free graph is constructed: Sound • Given a fully expanded and clash-free graph, we can trivially construct a model Complete • Given a model, we can use it to guide application of non-deterministic rules in such a way as to construct a clash-free graph Terminating • Bounds on number of named individuals, out-degree of trees (rule applications per node), and depth of trees (blocking) • Crucially depends on (some form of) tree model property

  16. SHOIQ: Why is it Hard?

  17. SHIQ is Already Tricky • Does not have finite model property, e.g.: {ITN v61edge–u8 edge.ITN u9edge.ITN, R:(ITN u60edge–)} • Double blocking • Block interpreted as infinite repetition

  18. SHIQ is Already Tricky • Does not have finite model property, e.g.: {ITN v61edge–u8 edge.ITN u9edge.ITN, R:ITN u60edge–u9edge.ITN} • Double blocking • Block interpreted as infinite repetition • Yo-yo problem due to > and 6, e.g.: {John:9hasChild.Doctor u>2 hasChild.Lawyer u62hasChild} • Add inequalities between nodes generated by > rule • Clash if 6 rule only applicable to  nodes

  19. SHOIQ: ExpTime ! NExpTime • Interactions between O, I, and Q lead to termination problems • Anonymous branches can loop back to named individuals (O) • E.g., 9r.{Mary} • Number restrictions (Q) on incoming edges (I) lead to non-tree structure • E.g., Mary:61r– • Result is anonymous nodes that act like named individual nodes • Blocking sequence cannot include such nodes • Don’t know how to build a model from a graph including such a block

  20. Intuition: Nominal Nodes • Nominal nodes (N-nodes) include: • Named individual nodes • Nodes affected by number restriction via outgoing edge to N-node • Blocking sequence cannot include N-nodes • Bound on number of N-nodes • Must initially have been on a path between named individual nodes • Length of such paths bounded by blocking • Number of incoming edges at an N-node is limited by number restrictions

  21. SHOIQ: Yo-Yo Problem is Back! E.g., KB: {VMP´Person u9loves.{Mary} u9hasFriend.VMP, John:9hasFriend.VMP Mary:62loves–} • Blocking prevented by N-nodes • Repeated creation and merging of nodes leads to non-termination

  22. Intuition: Guess Exact Cardinality • New Ro?-rule guesses exact cardinality constraint on N-nodes {VMP´Person u9loves.{Mary} u9hasFriend.VMP, John:9hasFriend.VMP Mary:62loves–} • Inequality between resulting N-nodes fixes yo-yo problem • Introduces new source of non-determinism • But only if nominals used in a “nasty” way • Usage in ontologies typically “harmless” • Otherwise behaves as forSHIQ

  23. Summary • DLs are a family of logic based KR formalisms • Well known as basis of ontologylanguages such as OWL • Key motivation for the design of OWL was the existence of DL tableaux decision procedures and implementations • But, no procedure/implementation for OWL DL/SHOIN (up to now) • SHOIQ algorithm solves this (very embarrassing) problem • Ro?-rule introduces new source of non-determinism • But good “pay as you go” characteristics • Implementation already underway in FaCT++ and Pellet systems • Should work well in realistic ontology applications

  24. Questions?

More Related