1 / 41

The Research on Usability as High-Functional Geo-Materials using Low Quality Surplus Soil and

The Research on Usability as High-Functional Geo-Materials using Low Quality Surplus Soil and Municipal Waste Incinerator Ashes. 表紙. Nagasaki University K. Ogawa Y. Tanabashi Y. Jiang K. Hidaka. Back ground of research. Municipal solid waste incinerator ashes (MSWI ashes). 研究の背景.

calais
Download Presentation

The Research on Usability as High-Functional Geo-Materials using Low Quality Surplus Soil and

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Research on Usability as High-Functional Geo-Materials using Low Quality Surplus Soil and Municipal Waste Incinerator Ashes 表紙 Nagasaki University K. Ogawa Y. Tanabashi Y. Jiang K. Hidaka

  2. Back ground of research Municipal solid waste incinerator ashes (MSWI ashes) 研究の背景 • Increase rapidly with the economic growing • Risk of environmental pollution • Lack of the disposal space Low quality sludge (Ariake clay) Low quality sludge (Ariake clay) • Difficult for usage • Sudden rise of disposal cost • Limit of the disposal space The resource recycling of them is urgent problem

  3. Purpose of research Turned harmless Mixture pavement and filling material Integral construction Mechanical characterization Chemical characterization centrifugal model experiment mumerical simulation Evaluation of usability MSWI ashes 研究の目的 Low quality sludge Ecoash New type construction material Evaluation

  4. Processing flow of recycling system リサイクルシステム Dust collector Storage equipment Melting equipment Activated carbon adsorption Chimney Fixed quantity supply equipment Fly ash Exhaust gas Exhaust gas Additives A Dryness equipment The magnetic separator The first response equipment Crusher Crusher Additives B Decomposition of dioxin The second response equipment The first processing ashes tank Production Product tank Stabilization of heavy metals Decomposition of dioxin Stabilization of heavy metals

  5. The characteristics of Ecoash 56.3 53.17 エコアッシュの物性値

  6. The characteristics ofLow Quality Surplus Soil 20500 179 139 97.2 有明粘土の物性値

  7. Results of the unconfined compression test RL=5% RL=1% Target strength 300kPa Mixing condition 一軸圧縮試験結果 • Water content of Ariake clay W ≒ 139% • Saga Ecoash:Ariake clay=50:50 • Ratio of the slaked lime RL = 0,1,2,5% Slaked lime addition is large factor

  8. 重金属溶出試験 Heavy metals leaching test Possible to suppress the elutionof heavy metals

  9. pH measurement test pH測定試験 Ariake clay 7.1 Hasuike clay 5.8 10.6 Ecoash 12.5 Slaked lime 12.2 Ecoash/clay mixture 0 2 4 6 8 10 12 14 pH PbCl2+Ca(OH)2→Pb(OH)2+CaCl2 2Na3AsO4+3Ca(OH)2→Ca3(AsO4)2+6NaO Ecoash/clay mixture can be purification effect of the soil pollution and oxidation depression effect.

  10. Centrifugal model Experimentpreparation 80G ×80 Experiment on age 14 days Experimental device 遠心模型実験概要 Model scale 50cm wide, 14cm deep 40m wide,11.2m deep Real ground scale Saga Ecoash :Ariake Clay=50:50, Ratio of the slaked lime RL =1% Improvement layer and Filling are made Experiment on age 14 days

  11. The outline chart of the model ground 模型地盤概要図 Clay layer with water content about 100% is prepared through the loading plate with 12cm wide while acting centrifugal acceleration of 80G Cut out clay layer and construct Improvement and Fill after self-weight consolidation loading Fill Loading plate 120 40 Gradient of slope 1:0.6 238 D Improvement Improvement Clay B 140 ① 52.5(40) Clay ③ 119 ② 150 57.5 500 Earth pressure gauge (Case3) (Unit:mm)

  12. Experiment Cases L/5 2m 2m 3m 21.0m 24.8m 21.0m 実験ケース (Size: Real ground scale) L Fill Improvement Clay

  13. Load-Settlement curve (Experiment) Case2 Case2,Case4 clay particles would intrude themselves into reinforcement layer remaining the reinforcement layer integrated Case4 Case3 Case4 Case1 Reinforcement layer subjected to filling has been destroyed the fill has been demolished before loading Case2 and Case4 could be assumed in almost the same reaction. Fill was steady by integral construction 荷重強度-沈下量関係 Case2 Case3 Case4

  14. Outline of Analytic model ① A clay layer model with surface reinforced is assumed as 80 times of centrifugal model. A clay layer model with surface reinforced is assumed as 80 times of centrifugal model. 数値解析概要① Analysis procedure Analysis code FLAC3D Construct clay Yield criterion Cut out clay layer Mohr-Coulomb Construct Improvement and Fill Loading method 60kPa loadings (It was six stages in total as for 10kPa) Loading

  15. Outline of Analytic model ② Analytical Cases 数値解析概要② The same as experiment case However, Case1 was no loading Analytical physical property

  16. Load-Settlement curve (Case3) 25 Experiment value Analysis value 荷重強度-沈下量関係 Difference of loading method Case3

  17. Optimised by numerical simulation 57.0m Load-Settlement curve 最適条件の特定 Change B and D Calculate bearing capacity Fill Improvement 19.0m L D B Clay

  18. Numerical simulation cases 解析ケース

  19. Load-Settlement curve 21.0:2 21.0:3 24.8:2 24.8:3 28.6:2 28.6:3 荷重強度-沈下量関係 breadth B and depth D of Improvement take little effect on the bearing capacity

  20. Conclusions When B>0, D>2, arbitrarily Band D can be set Integral construction is effective Mixture (Ecoash,Low quality sludge,Slaked lime) 結論 Mechanical characterization &Chemical characterization • Sufficient strength • Chemical stable and harmless to public health Centrifugal model experiment & Numerical analysis • When B>0, D>2, breadth B and depth D of Improvement take little effect on the bearing capacity • Fill was steady by integral construction with pavement Could be used as a high performance geo-material

  21. End

  22. Comparison of soil pressures (before loading) Theory Real ground 土圧比較(実験) Load strength p (Unit:kPa) 0 Settlement S

  23. Displacement vector(Case3) Loading 20 kPa 50 kPa 60 kPa 0 kPa 10 kPa 30 kPa 40 kPa 変位ベクトル Clay  Improvement Loading plate Fill

  24. コストについて コストについて

  25. 一般廃棄物焼却灰リサイクルシステム 添加剤A ダイオキシン類の 分解 添加剤B 製品化 重金属類の安定化 リサイクルシステム

  26. 表層改良工法 隆起 軟弱層 沈下 側方流動 未改良地盤 支持層 改良層 軟弱層 荷重分散・支持力増大 支持層 表層改良地盤 表層改良工法

  27. 変形係数E50 変形係数

  28. Pb,Asの安定化 Pb (鉛) 混合することで生じる化学式 PbCl2 + Ca(OH)2→ Pb(OH)2 + CaCl2 水酸化物 As (ヒ素) 2Na3AsO4 + 3Ca(OH)2→ Ca3(AsO4)2 + 6NaOH 低溶解度化合物

  29. 遠心模型実験の相似則 実物の1/nの幾何学的模型を実物と同じ土質構成で、 nGの遠心力場に置いた場合‥‥‥‥ 遠心模型実験の相似則 体積  Vm=Vp/n3 面積Am=Ap/n2 長さlm=lp/n 単位体積重量γm=nγp 土の重さW(=Vγ)に関して  Wm=Wp/n2 深さzm(= zp /n)における自重鉛直応力σ(=zγ)は σm= γm ・ zm =(nγp)・(zp /n)=σp 模型は実物と同一材料で鉛直応力が等しいから全ての方向の応力が実物と同じ 沈下量、一般に変形量Sは Sm=Sp/n 添字p,mは、実物と模型を示す

  30. セメント系固化材について セメント セメント系固化材について ポルトランドセメント 混合セメント (JIS規格品) 特殊セメント (コロイドセメント,超速硬セメント等) セメント系固化材 「土あるいはこれに類するもの」を固めることを目的に, 補強,粒度調整したもの

  31. 理論値の計算法 2b=B 理論値の計算法 q x (-b,0) (b,0) σz (x,z) z まず、初期の地盤内応力としてσz=γt・zを用いて計算 次に、地盤内増加応力σz=Izqは次式に、B=2b=1.92mを代入

  32. 載荷前における土圧比較 土圧比較(実験)

  33. 解析手法 解析手法 陽解有限差分プログラム 降伏すると塑性流動を呈する土などの材料で構成される 構造体の挙動をシミュレートすることが可能 要素 力を加えられると その力や境界の拘束に応答 格子は材料の動きに連れて変形し動く 陽解法のラググランジュ方程式による解析手法 混合-離散要素分割テクニック 塑性的な崩壊と流動を正確にモデル化

  34. 解析手法の計算手順 解析手法の計算手順 はじめに新しい速度と変位を得るために 応力を用いて運動方程式を解く 運動方程式 加速度・速度・変位 応力・力 速度からひずみ速度を導き ひずみ速度から新しい応力を得る 応力/ひずみ速度 すでに計算により得られた速度からそれぞれの要素に対して 新しい応力を計算する。速度はその際凍結され変化しない 新しく計算された応力は、速度に影響を与えない

  35. 解析のモール・クーロンモデル 解析のモール・クーロンモデル

  36. 体積弾性係数とせん断弾性係数 体積弾性係数とせん断弾性係数 体積弾性係数 弾性体の全表面にかかる応力と体積ひずみとの比 せん断弾性係数 せん断応力とせん断ひずみとの比

  37. 載荷前における土圧比較 Case1 (単位:kPa) 土圧比較(解析) Case2

  38. 荷重強度-沈下量関係 (Case2) 実験値 解析値 早期に破壊 進展 荷重強度-沈下量関係(解析Case2) 段階載荷

  39. 理論値と実験値の違いについて(土圧) 応力伝達が不完全 Case3土圧比較 法先より沈下 ① 応力伝達が不完全 ③ ② 土圧計測が困難 Case3

  40. 鉛直方向応力の変化 (Case3) 載荷 (単位:kPa) 0 kPa 10 kPa 20 kPa 30 kPa 40 kPa 50 kPa 60 kPa 鉛直方向応力の変化 載荷板

More Related