150 likes | 1.18k Views
Teori Bahasa dan Automata MODUL 11 Ekivalensi Mesin Moore dan Mesin Mealy Dari suatu Mesin Moore dapat dibuat Mesin Mealy yang ekivalen, begitu juga sebaliknya. Untuk mesin Mealy pada gambar 2 dapat kita buat Mesin Moore yang
E N D
Teori Bahasa dan Automata MODUL 11 Ekivalensi Mesin Moore dan Mesin Mealy Dari suatu Mesin Moore dapat dibuat Mesin Mealy yang ekivalen, begitu juga sebaliknya. Untuk mesin Mealy pada gambar 2 dapat kita buat Mesin Moore yang ekivalen yaitu gambar 3. Bisa kita lihat state pada mesin Moore dibentuk dari kombinasi state pada Mealy dan banyaknya output. Karena jumlah state Mealy = 3, dan jumlah output = 2, maka jumlah state pada Moore yang ekivalen = 6. Bisa dilihat konfigurasi Mesin Moore yang dibentuk: Q =q0Y, q0T, q1Y,q1T, q2Y,q2T =0,1 =Y,T S = q0 (q0Y) = Y (q0T) = T (q1Y) = Y (q1T) = T (q2Y) = Y (q2T) = T 1 1 0 0 q0T q1T q2T T T T T 0 q0Y 1 0 q1Y 0 0 1 q2Y 1 Y 1 Y Y Gambar 3. Mesin Moore yang ekivalen dengan gambar 2 http://www.mercubuana.ac.id Puji Catur Siswipraptini 1
Teori Bahasa dan Automata Sebagai contoh mesin otomata berikut dimana FSA tersebut dikatakan DFA, jika selalu memenuhi tabel transisi berikut : The table represents the function , i.e. to find the value of we have to look at the row labelled and the column labelled . The initial state is marked by an and all final states are marked by . Yet another, optically more inspiring, alternative are transition diagrams: There is an arrow into the initial state and all final states are marked by double rings. If then there is an arrow from state to which is labelled . We write for the set of words (i.e. sequences) over the alphabet . This includes the empty word which is written . I.e. http://www.mercubuana.ac.id Puji Catur Siswipraptini 3
Teori Bahasa dan Automata A string equivalently is accepted by M if there is a path labeled w from the initial state q0 to a final state, or such that . }. Problem : Which of the following strings are accepted by these non-deterministic finite automata? aa, aba, abb ,ab, abab (NDFA 1); ba, ab, bb, b, bba (NDFA 2); 00, 01001, 10010, 000, 0000 (NDFA 3). Find strings different from the above which are accepted (not accepted) by the corresponding automata. Problem 2.2 Draw state diagrams for non-deterministic finite automata accepting these languages: (a) (b) (c) ((a*b*a*)*b)*; (d) ; ; . Problem 2.3 Which of the following strings are accepted by nondeterministic finite automata: a; b; a b; bb; b a b b? http://www.mercubuana.ac.id Puji Catur Siswipraptini 5