1 / 47

Understanding the role of phase function in translucent appearance

Understanding the role of phase function in translucent appearance. Ioannis Gkioulekas 1. Shuang Zhao 3. Bei Xiao 2. Kavita Bala 3. Todd Zickler 1. Edward Adelson 2. 1 Harvard. 2 MI Τ. 3 Cornell. Translucency is everywhere. skin. food. architecture. jewelry. Subsurface scattering.

calix
Download Presentation

Understanding the role of phase function in translucent appearance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Understanding the role of phase function in translucent appearance Ioannis Gkioulekas1 Shuang Zhao3 Bei Xiao2 KavitaBala3 Todd Zickler1 Edward Adelson2 1Harvard 2MIΤ 3Cornell

  2. Translucency is everywhere skin food architecture jewelry

  3. Subsurface scattering • outgoing direction • incident direction • isotropic • extinction coefficient σt (λ) • absorption coefficient σa (λ) (λ) • radiative transfer equation • phase function p • Chandrasekhar 1960

  4. Phase function is important • thick parts (diffusion) • thin parts

  5. Common phase functions • Henyey-Greenstein (HG) lobes • single-parameter family: • average cosine • Henyey and Greenstein 1941

  6. What can we represent with HG?    • microcrystalline wax • marble • white jade • Jensen 2001

  7. Henyey-Greenstein is not enough • soap • setup • photo • HG • microcrystalline wax

  8. Goals ? ? • expanded phase function space • role in translucent appearance

  9. Expanded phase function space • von Mises-Fisher (vMF) lobes • Henyey-Greenstein (HG) lobes • single-parameter family: • single-parameter family: • average cosine • second moment

  10. Expanded phase function space • soap • setup • photo • HG • vMF • microcrystalline wax

  11. Expanded phase function space • von Mises-Fisher (vMF) lobes • Henyey-Greenstein (HG) lobes • single-parameter family: • single-parameter family: • Linear mixtures: • vMF + vMF • HG + HG • HG + vMF

  12. Redundant phase function space ≈ ≠ f( ) f( ) ≈

  13. Related work • Fleming and Bülthoff 2005, Motoyoshi2010 • many perceptual cues • do not study phase function • Pellacini et al. 2000, Wills et al. 2009 • gloss perception • much smaller space • Ngan et al. 2006 • gloss perception • navigation of appearance space

  14. Our approach • 1. Computational processing • 2. Psychophysical validation • 3. Analysis of results • image-driven analysis • tractable experiment • visualization, perceptual parameterization

  15. Scene design • side-lighting • mostly low-order scattering • mostly high-order scattering • thin parts and fine details • thick body and base

  16. Expanded phase function space • von Mises-Fisher (vMF) lobes • Henyey-Greenstein (HG) lobes • sample 750+ phase functions • Linear mixtures: • HG + HG • HG + vMF • 3000 machine hours • 750+ HDR images

  17. Psychophysics • Hmm, left • Paired-comparison experiments

  18. Psychophysics • 750 images = 200 million comparisons

  19. Image-driven analysis d( , ) ǁ - ǁ ≈

  20. Computational processing ≈ ǁ - ǁ • multidimensional scaling • two-dimensional appearance space • two-dimensional embedding • 750 HDR images

  21. Our approach • 1. Computational processing • 2. Psychophysical validation • 3. Analysis of results • image-driven analysis • tractable experiment • visualization, perceptual parameterization

  22. Psychophysical validation ǁ - ǁ • clustering • two-dimensional appearance space • 40 representative images

  23. Psychophysical validation • 750 phase functions = 200 million comparisons • 40 phase functions = 30,000 comparisons

  24. Psychophysical validation • use computational embedding as proxy for psychophysics • generalize to all 750 images ≈ • perceptual embedding • computational embedding • (MDS using image metrics) • (non-metric MDS on psych. data)

  25. Our approach • 1. Computational processing • 2. Psychophysical validation • 3. Analysis of results • image-driven analysis • tractable experiment • visualization, perceptual parameterization

  26. What we know so far • translucent appearance space • two-dimensional • perceptual • consistent across variations of material, shape, illumination • see paper for: 5000+ images, 9 more computational embeddings, 2 more psychophysical experiments including backlighting, analysis and statistics

  27. Moving around the space

  28. Moving around the space • more diffused appearance • moving vertically

  29. Moving around the space • more glass-like appearance • moving horizontally

  30. Moving around the space • we can move anywhere

  31. What can we render with… • single forward lobes • forward + isotropic mixtures • forward + backward mixtures

  32. What can we render with… • marble ≠ • white jade • best approximation • with HG + isotropic • marble • white jade • with vMF + vMF

  33. Editing the phase function • more diffused • move horizontally • move vertically • more glass-like

  34. Perceptual parameterization • 0 • HG: • 0.4 • 0.8 • move vertically • g

  35. Perceptual parameterization • 0 • HG: • 0.32 • 0.64 • move vertically • g2

  36. Perceptual parameterization • 0 • HG: • HG: • 0.32 • 0.4 • 0.64 • 0.8 • move vertically • g • g2

  37. Discussion • handling other parameters of appearance: σt, σa,color • need to (further) scale up methodology • more general or data-driven phase function models • see our SIGGRAPH Asia 2013 paper! • use in translucency editing and design user interfaces

  38. Three take-home messages • HG is not enough • expanded space • marble • white jade • computation + psychophysics • large-scale perceptual studies • 2D appearance space • uniform parameterization

  39. Acknowledgements • Wenzel Jakob • Bonhams • marble • white jade • Funding: • NSF • NIH • Amazon • Dataset of 5000+ images: http://tinyurl.com/s2013-translucency

  40. Computational embeddings • 5000+ more HDR images • material variation • shape variation • lighting variation

  41. Scene design

  42. Psychophysical validation ≈ • perceptual embedding • computational embedding • (MDS using image metrics) • (non-metric MDS on psych. data)

  43. Computational metrics • cubic root • L2-norm • L1-norm

  44. Perceptual image metrics • material variation • shape variation • lighting variation

  45. Embedding stability • perturbation 2 • original • perturbation 1 • perturbation 4 • perturbation 3 • perturbation 5

  46. Distance metric • MDS • sample 750+ phase functions • MDS • Davis et al. 2007

  47. Non-metric MDS • Learning from relative comparisons • non-metric • MDS • Hmm, left d >d • Wills et al. 2009

More Related