510 likes | 726 Views
Understanding the role of phase function in translucent appearance. Ioannis Gkioulekas 1. Shuang Zhao 3. Bei Xiao 2. Kavita Bala 3. Todd Zickler 1. Edward Adelson 2. 1 Harvard. 2 MI Τ. 3 Cornell. Translucency is everywhere. skin. food. architecture. jewelry. Subsurface scattering.
E N D
Understanding the role of phase function in translucent appearance Ioannis Gkioulekas1 Shuang Zhao3 Bei Xiao2 KavitaBala3 Todd Zickler1 Edward Adelson2 1Harvard 2MIΤ 3Cornell
Translucency is everywhere skin food architecture jewelry
Subsurface scattering • outgoing direction • incident direction • isotropic • extinction coefficient σt (λ) • absorption coefficient σa (λ) (λ) • radiative transfer equation • phase function p • Chandrasekhar 1960
Phase function is important • thick parts (diffusion) • thin parts
Common phase functions • Henyey-Greenstein (HG) lobes • single-parameter family: • average cosine • Henyey and Greenstein 1941
What can we represent with HG? • microcrystalline wax • marble • white jade • Jensen 2001
Henyey-Greenstein is not enough • soap • setup • photo • HG • microcrystalline wax
Goals ? ? • expanded phase function space • role in translucent appearance
Expanded phase function space • von Mises-Fisher (vMF) lobes • Henyey-Greenstein (HG) lobes • single-parameter family: • single-parameter family: • average cosine • second moment
Expanded phase function space • soap • setup • photo • HG • vMF • microcrystalline wax
Expanded phase function space • von Mises-Fisher (vMF) lobes • Henyey-Greenstein (HG) lobes • single-parameter family: • single-parameter family: • Linear mixtures: • vMF + vMF • HG + HG • HG + vMF
Redundant phase function space ≈ ≠ f( ) f( ) ≈
Related work • Fleming and Bülthoff 2005, Motoyoshi2010 • many perceptual cues • do not study phase function • Pellacini et al. 2000, Wills et al. 2009 • gloss perception • much smaller space • Ngan et al. 2006 • gloss perception • navigation of appearance space
Our approach • 1. Computational processing • 2. Psychophysical validation • 3. Analysis of results • image-driven analysis • tractable experiment • visualization, perceptual parameterization
Scene design • side-lighting • mostly low-order scattering • mostly high-order scattering • thin parts and fine details • thick body and base
Expanded phase function space • von Mises-Fisher (vMF) lobes • Henyey-Greenstein (HG) lobes • sample 750+ phase functions • Linear mixtures: • HG + HG • HG + vMF • 3000 machine hours • 750+ HDR images
Psychophysics • Hmm, left • Paired-comparison experiments
Psychophysics • 750 images = 200 million comparisons
Image-driven analysis d( , ) ǁ - ǁ ≈
Computational processing ≈ ǁ - ǁ • multidimensional scaling • two-dimensional appearance space • two-dimensional embedding • 750 HDR images
Our approach • 1. Computational processing • 2. Psychophysical validation • 3. Analysis of results • image-driven analysis • tractable experiment • visualization, perceptual parameterization
Psychophysical validation ǁ - ǁ • clustering • two-dimensional appearance space • 40 representative images
Psychophysical validation • 750 phase functions = 200 million comparisons • 40 phase functions = 30,000 comparisons
Psychophysical validation • use computational embedding as proxy for psychophysics • generalize to all 750 images ≈ • perceptual embedding • computational embedding • (MDS using image metrics) • (non-metric MDS on psych. data)
Our approach • 1. Computational processing • 2. Psychophysical validation • 3. Analysis of results • image-driven analysis • tractable experiment • visualization, perceptual parameterization
What we know so far • translucent appearance space • two-dimensional • perceptual • consistent across variations of material, shape, illumination • see paper for: 5000+ images, 9 more computational embeddings, 2 more psychophysical experiments including backlighting, analysis and statistics
Moving around the space • more diffused appearance • moving vertically
Moving around the space • more glass-like appearance • moving horizontally
Moving around the space • we can move anywhere
What can we render with… • single forward lobes • forward + isotropic mixtures • forward + backward mixtures
What can we render with… • marble ≠ • white jade • best approximation • with HG + isotropic • marble • white jade • with vMF + vMF
Editing the phase function • more diffused • move horizontally • move vertically • more glass-like
Perceptual parameterization • 0 • HG: • 0.4 • 0.8 • move vertically • g
Perceptual parameterization • 0 • HG: • 0.32 • 0.64 • move vertically • g2
Perceptual parameterization • 0 • HG: • HG: • 0.32 • 0.4 • 0.64 • 0.8 • move vertically • g • g2
Discussion • handling other parameters of appearance: σt, σa,color • need to (further) scale up methodology • more general or data-driven phase function models • see our SIGGRAPH Asia 2013 paper! • use in translucency editing and design user interfaces
Three take-home messages • HG is not enough • expanded space • marble • white jade • computation + psychophysics • large-scale perceptual studies • 2D appearance space • uniform parameterization
Acknowledgements • Wenzel Jakob • Bonhams • marble • white jade • Funding: • NSF • NIH • Amazon • Dataset of 5000+ images: http://tinyurl.com/s2013-translucency
Computational embeddings • 5000+ more HDR images • material variation • shape variation • lighting variation
Psychophysical validation ≈ • perceptual embedding • computational embedding • (MDS using image metrics) • (non-metric MDS on psych. data)
Computational metrics • cubic root • L2-norm • L1-norm
Perceptual image metrics • material variation • shape variation • lighting variation
Embedding stability • perturbation 2 • original • perturbation 1 • perturbation 4 • perturbation 3 • perturbation 5
Distance metric • MDS • sample 750+ phase functions • MDS • Davis et al. 2007
Non-metric MDS • Learning from relative comparisons • non-metric • MDS • Hmm, left d >d • Wills et al. 2009