1 / 45

Logic Design Review – 1 Basic Gates

Logic Design Review – 1 Basic Gates. Lecture L14.1 Verilog. Basic Gates. NOT Gate AND Gate OR Gate XOR Gate NAND Gate NOR Gate XNOR Gate. Y. X. 0 1. 1 0. Basic Gates. Y = ~X not (Y , X). X. Y. NOT. X Y Z 0 0 0 0 1 0 1 0 0 1 1 1. Z = X & Y

Download Presentation

Logic Design Review – 1 Basic Gates

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logic Design Review – 1Basic Gates Lecture L14.1 Verilog

  2. Basic Gates • NOT Gate • AND Gate • OR Gate • XOR Gate • NAND Gate • NOR Gate • XNOR Gate

  3. Y X 0 1 1 0 Basic Gates Y = ~X not(Y,X) X Y NOT X Y Z 0 0 0 0 1 0 1 0 0 1 1 1 Z = X & Y and(Z,X,Y) X AND Z Y X Y Z 0 0 0 0 1 1 1 0 1 1 1 1 Z = X | Y or(Z,X,Y) X OR Z Y Any logic circuit can be created using only these three gates

  4. NOT Gate X ~X ~~X = X X ~X ~~X 0 1 0 1 0 1 Behavior: The output of a NOT gate is the inverse (one’s complement) of the input

  5. AND Gate Behavior: The output of an AND gate is HIGH only if all inputs are HIGH assign Z = X[1] & X[2] & ... & X[n]; assign Z = &X; and(Z,X[1],X[2],...,X[n]);

  6. 4-Input AND Gate 3-Level Behavior: Z = X[1]; for(i=2; i<=4; i++) Z = Z & X[i]; 2-Level

  7. OR Gate Behavior: The output of an OR gate is LOW only if all inputs are LOW assign Z = X[1] | X[2] | ... | X[n]; assign Z = |X; or(Z,X[1],X[2],...,X[n]);

  8. 4-Input OR Gate 3-Level Behavior: Z = X[1]; for(i=2; i<=4; i++) Z = Z | X[i]; 2-Level

  9. Exclusive-OR (XOR) Gate Behavior: The output of an XOR gate is HIGH only if the number of HIGH inputs is ODD assign Z = X[1] ^ X[2] ^ ... ^ X[n]; assign Z = ^X; xor(Z,X[1],X[2],...,X[n]);

  10. X Z Y 2-Input XOR Gate XOR X Y Z 0 0 0 0 1 1 1 0 1 1 1 0 Z = X ^ Y xor(Z,X,Y) Note: if Y = 0, Z = X if Y = 1, Z = ~X Therefore, an XOR gate can be used as a controlled inverter

  11. 4-Input XOR Gate 3-Level Behavior: Z = X[1]; for(i=2; i<=4; i++) Z = Z ^ X[i]; 2-Level Note: Z = 1 if the number of 1 inputs in ODD

  12. Exclusive-NOR Gate XNOR (NOT – XOR) Behavior: The output of an XNOR gate is HIGH only if the number of HIGH inputs is EVEN assign Z = ~(X[1] ^ X[2] ^ ... ^ X[n]); assign Z = ~^X; xnor(Z,X[1],X[2],...,X[n]);

  13. 2-Input XNOR Gate XNOR X Y Z 0 0 1 0 1 0 1 0 0 1 1 1 X Z Y Z = ~(X ^ Y) Z = X ~^ Y xnor(Z,X,Y) Note: Z = 1 if X = Y Therefore, an XNOR gate can be used as an equality detector

  14. NAND Gate (NOT-AND) Behavior: The output of an NAND gate is LOW only if all inputs are HIGH assign Z = ~(X[1] & X[2] & ... & X[n]); assign Z = ~&X; nand(Z,X[1],X[2],...,X[n]);

  15. 2-Input NAND Gate NAND X Y Z 0 0 1 0 1 1 1 0 1 1 1 0 X Z Y Z = ~(X & Y) Z = X ~& Y nand(Z,X,Y)

  16. NOR Gate (NOT – OR) Behavior: The output of an NOR gate is HIGH only if all inputs are LOW assign Z = ~(X[1] | X[2] | ... | X[n]); assign Z = ~|X; nor(Z,X[1],X[2],...,X[n]);

  17. 2 Input NOR Gate NOR X Y Z 0 0 1 0 1 0 1 0 0 1 1 0 X Z Y Z = ~(X | Y) Z = X ~| Y nor(Z,X,Y)

  18. Gates.v module gates ( X ,Z, Y ); input [4:1] X ; wire [4:1] X ; output [6:1] Z ; wire [6:1] Z ; output [6:1] Y ; wire [6:1] Y ; and(Z[6],X[1],X[2],X[3],X[4]); nand(Z[5],X[1],X[2],X[3],X[4]); or(Z[4],X[1],X[2],X[3],X[4]); nor(Z[3],X[1],X[2],X[3],X[4]); xor(Z[2],X[1],X[2],X[3],X[4]); xnor(Z[1],X[1],X[2],X[3],X[4]); assign Y[6] = &X; assign Y[5] = ~&X; assign Y[4] = |X; assign Y[3] = ~|X; assign Y[2] = ^X; assign Y[1] = ~^X; endmodule Verilog gate level primitives Verilog reduction operators

  19. and(Z[6],X[1],... nand(Z[5],X[1], ... or(Z[4],X[1], ... nor(Z[3],X[1], ... xor(Z[2],X[1], ... xnor(Z[1],X[1], ... assign Y[6] = &X; assign Y[5] = ~&X; assign Y[4] = |X; assign Y[3] = ~|X; assign Y[2] = ^X; assign Y[1] = ~^X;

  20. NAND Gate X Z X Z = Y Y Z = ~(X & Y) Z = ~X | ~Y X Y W Z 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 X Y ~X ~Y Z 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0

  21. De Morgan’s Theorem-1 ~(X | Y) = ~X | ~Y • NOT all variables • Change & to | and | to & • NOT the result

  22. NOR Gate X X Z Z Y Y Z = ~(X | Y) Z = ~X & ~Y X Y Z 0 0 1 0 1 0 1 0 0 1 1 0 X Y ~X ~Y Z 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0

  23. De Morgan’s Theorem-2 ~(X | Y) = ~X & ~Y • NOT all variables • Change & to | and | to & • NOT the result

  24. De Morgan’s Theorem • NOT all variables • Change & to | and | to & • NOT the result • -------------------------------------------- • ~X | ~Y = ~(~~X & ~~Y) = ~(X & Y) • ~(X & Y) = ~~(~X | ~Y) = ~X | ~Y • ~X & ~Y = ~(~~X | ~~Y) = ~(X | Y) • ~(X | Y) = ~~(~X & ~Y) = ~X & ~Y

  25. Behavior of multiple input gates module gates ( X ,Z); input [4:1] X ; wire [4:1] X ; output [1:6] Z ; reg [1:6] Z ; integer i; // 4-input and gate always @(X) begin Z[1] = X[1]; for(i=2; i<=4; i=i+1) Z[1] = Z[1] & X[i]; end

  26. Behavior of multiple input gates // 4-input nand gate -- DeMorgan's Theorem always @(X) begin Z[2] = ~X[1]; for(i=2; i<=4; i=i+1) Z[2] = Z[2] | ~X[i]; end =

  27. Behavior of multiple input gates // 4-input or gate always @(X) begin Z[3] = X[1]; for(i=2; i<=4; i=i+1) Z[3] = Z[3] | X[i]; end // 4-input nor gate // DeMorgan's theorem always @(X) begin Z[4] = ~X[1]; for(i=2; i<=4; i=i+1) Z[4] = Z[4] & ~X[i]; end

  28. Behavior of multiple input gates // 4-input xor gate always @(X) begin Z[5] = X[1]; for(i=2; i<=4; i=i+1) Z[5] = Z[5] ^ X[i]; end // 4-input xnor gate always @(X) begin Z[6] = X[1]; for(i=2; i<=4; i=i+1) Z[6] = Z[6] ~^ X[i]; end endmodule

  29. and nand or nor xor xnor

  30. Implementing Gates A Relays A A C C C B B pMOS transistor A-B closed when C = 0 (normally closed) nMOS transistor A-B closed when C = 1 (normally open) B Normally open Normally closed

  31. 5V Y X 0 1 1 0 X Y NOT Gate Y X Y = ~X not(Y,X)

  32. 5V Y X 0 1 1 0 X Y NOT Gate Y X 0 1 Y = ~X not(Y,X)

  33. 5V Y X 0 1 1 0 X Y NOT Gate Y X 1 0 Y = ~X not(Y,X)

  34. NAND Gate 5V Z X Z Y X X Y Z 0 0 1 0 1 1 1 0 1 1 1 0 Y

  35. NAND Gate 5V Z X Z 0 Y X X Y Z 0 0 1 0 1 1 1 0 1 1 1 0 0 Y

  36. NAND Gate 5V Z X Z 0 Y X X Y Z 0 0 1 0 1 1 1 0 1 1 1 0 1 Y

  37. NAND Gate 5V Z X Z 1 Y X X Y Z 0 0 1 0 1 1 1 0 1 1 1 0 0 Y

  38. NAND Gate 5V Z X Z 1 Y X X Y Z 0 0 1 0 1 1 1 0 1 1 1 0 1 Y

  39. NOR Gate 5V X X Z Y Y Z X Y Z 0 0 1 0 1 0 1 0 0 1 1 0

  40. NOR Gate 5V 0 X X Z Y 0 Y Z X Y Z 0 0 1 0 1 0 1 0 0 1 1 0

  41. NOR Gate 5V 0 X X Z Y 1 Y Z X Y Z 0 0 1 0 1 0 1 0 0 1 1 0

  42. NOR Gate 5V 1 X X Z Y 0 Y Z X Y Z 0 0 1 0 1 0 1 0 0 1 1 0

  43. NOR Gate 5V 1 X X Z Y 1 Y Z X Y Z 0 0 1 0 1 0 1 0 0 1 1 0

  44. 5V Z AND Gate 5V X NAND-NOT Y

  45. 5V Z OR Gate 5V NOR-NOT X Y

More Related