1 / 44

XMM-Newton Surveys

XMM-Newton Surveys. Xavier Barcons. Acknowledgements. The XMM-Newton Survey Science Centre (SSC), especially Mike Watson , Christian Motch, Francisco Carrera, Axel Schwope and Mat Page among others The Lockman Hole team, especially Günther Hasinger and Andy Fabian

calum
Download Presentation

XMM-Newton Surveys

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. XMM-Newton Surveys Xavier Barcons XMM-Newton Surveys

  2. Acknowledgements • The XMM-Newton Survey Science Centre (SSC), especially Mike Watson, Christian Motch, Francisco Carrera, Axel Schwope and Mat Page among others • The Lockman Hole team, especially Günther Hasinger and Andy Fabian • The X-ray Astronomy group at my Institute (IFCA), the only (and best) one in Spain • The Spanish National Space Programme (project ESP2003-00812) • The whole XMM-Newton project for support and making things happen, including SOC, SSC, instrument teams, Users Group and more. XMM-Newton Surveys

  3. Index • What do X-rays tell us about the Universe? • The XMM-Newton X-ray space observatory • The XMM-Newton serendipitous X-ray survey • The XMM catalogue • Extragalactic Surveys • Surveying the Galactic Plane • The future of XMM-Newton surveys XMM-Newton Surveys

  4. Physical processes that produce X-rays • Plasmas (ionised gases) at temperatures of millions of degrees (bremsstrahlung and line emission) • Very energetic electrons in strong magnetic fields (synchrotron radiation) • Inverse Compton scattering on high energy electrons. • Matter falling towards compact objects or black holes (accretion) • Electron-positron pair cascades XMM-Newton Surveys

  5. OVIII OVII N132D SNR Fe line XMM-Newton Surveys

  6. Pulsar SNRs and Pulsars The Crab nebula Chandra XMM-Newton Surveys

  7. The magnetic field of isolated neutron stars First unambiguous detection of cyclotron absorption lines in the X-ray spectrum of an isolated neutron star: direct measurement of the magnetic field strength. B~8 x 1010 Gauss Cyclotron lines 1E1207.4–5209 Bignami, Caraveo, De Luca & Mereghetti 2003 XMM-Newton Surveys

  8. The Galactic centre in X-rays XMM-Newton Surveys

  9. Coma Clusters of galaxies Sérsic 159-03 XMM-Newton Surveys

  10. The X-ray view of Active Galactic Nuclei C. Done, Durham U (Chris Done, Univ of Durham) XMM-Newton Surveys

  11. The X-ray spectrum of AGN • Radiation from the accretion disk, reprocessed by a corona of hot electrons • Refection (Fe line and Compton recoil) • Absorption by surrounding material • Soft excess (direct radiation from the accretion disk) XMM-Newton Surveys

  12. Gilli et al 2000 The importance of absorption in AGN: the Cosmic X-ray background • The spectral energy distribution peaks at ~30 keV • Unified model: The right mixture of absorbed and unabsorbed AGN produces the spectrum of the Cosmic X-ray background • Predictions: • The majority of X-rays in the Universe are produced in absorbed objects • Many absorbed quasars should be found XMM-Newton Surveys

  13. The new X-ray observatories XMM-Newton (ESA) December 1999 Chandra (NASA) July 1999 XMM-Newton Surveys

  14. How does an X-ray telescope work? XMM-Newton Surveys

  15. XMM-Newton • Spatially resolved (15“) low-resolution spectroscopy (E/E~20-50) • Intermediate resolution dispersive spectrometry (0.03-0.06 Ang, E/E~200-500) • EPIC: (3) CCD spectroscopic imaging cameras 0.1-12 keV • (2) Reflection Grating Spectrometers (RGS): 0.05-3 keV • (1) Optical monitor (OM): Optical/UV imaging and grism spectroscopy. XMM-Newton Surveys

  16. XMM/Chandra Rosat log NH= A new window: Hard X-ray energies Sensitivity to hard X-ray energies (up to 12 keV with XMM-Newton) Absorbed sources can be seen! XMM-Newton Surveys

  17. The XMM-Newton serendipitous sky survey • Every new XMM-Newton pointing (with EPIC in full window mode) discovers ~30-150 serendipitous X-ray sources. • About 30,000 new X-ray sources/year, with positional and X-ray spectral information XMM-Newton Surveys

  18. The XMM-Newton catalogue • Compiled by the SSC • All EPIC detected sources, flags and large amount of information • Accessible through XSA, LUX, CDS • 1XMM released April 2003 (30,000 sources) • 2XMM released 2005 (100,000-150,000 sources) XMM-Newton Surveys

  19. 1XMM: Sky distribution XMM-Newton Surveys

  20. 1XMM: The X-ray population B1=0.2-0.5 keV B2=0.5-2.0 keV B3=2.0-4.5 keV B4=4.5-7.5 keV B5=7.5-12 keV HR1=(B2-B1)/(B2+B1) HR2=(B3-B2)/(B3+B2) HR3=(B4-B3)/(B4+B3) XMM-Newton Surveys

  21. Hard sources Soft sources 1XMM XMM-Newton Surveys

  22. The Survey Science Centre identification programme • Core programme (~1000 sources/sample): • High b faint sample (10-15 erg cm-2 s-1) • High b medium sample (10-14 erg cm-2 s-1) • High b bright sample (10-13 erg cm-2 s-1) • Galactic Plane Sample • Imaging programme (u,g’,r’,i’,Z,H) • Statistical identifications based on X-ray properties & imaging programme. XMM-Newton Surveys

  23. Sy 2 z=0.238 NGC 4291 z=0.0058 QSO z=0.565 QSO z=2.649 Sy 1 z=0.330 dMe Star XMM-Newton Surveys

  24. The XMM-Newton Medium Sensitivity Survey XMM-Newton Surveys

  25. The XMM-Newton Medium Sensitivity Survey (XMS) • 25 XMM fields • XID:0.5-4.5 keV • SXID>210-14cgs • Ω=3.5 deg2 • 298 sources • 200 identified (67%) Barcons et al 2002 Carrera et al 2005 XMM-Newton Surveys

  26. Identification strategy • Deep (~23mag) optical/NIR imaging of full EPIC field of view (La Palma, ESO) • Search for candidate counterparts • Optical spectroscopy (fibre+long slit) • AXIS (An XMM-Newton International Survey) international programme at La Palma (April 2000- April 2002) • Calar Alto, 3.5m telescope with MOSCA (2003-2005) http://www.ifca.unican.es/~xray/AXIS XMM-Newton Surveys

  27. XMS spectroscopic identifications Search for candidate counterparts i’-band sources within either: 5 (statistical) or 5 arcsec 95% of the X-ray sources have a potential optical candidate counterpart In > 75% of these cases, the candidate counterpart is unique XMM-Newton Surveys

  28. NGC4291 XMS: Luminosity vs. redshift XMM-Newton Surveys

  29. Early-type galaxies QSOs NGC4291 XMS: Optical colours • 228 sources have all both g.r, r-i colours: 60 UnID, 168 ID XMM-Newton Surveys

  30. Star/AGN separation NGC4291 XMS: fXID/fopt vs. HR2 XMM-Newton Surveys

  31. “Empty” sources and EROs Most of these sources are Extremely Red Objects (EROs) with R-K>5 Fiore et al 2003 XMM-Newton Surveys

  32. Extremely Red Objects and obscured AGNs Brusa, Comastri et al (2004) XMM-Newton Surveys

  33. Rotating supermassive Black Holes Absorption in AGN Distant galaxy cluster (z=1.2) The deepest XMM-Newton observation in the Lockman Hole XMM-Newton Surveys

  34. Average rest-frame spectra show relativistic Fe-lines type-1 AGN EW~500eV type-2 AGN EW~400eV Streblyanskaya et al., 2004 Lockman Hole800 ks XMM-Newton observation Average line profile calls for BH rotation XMM-Newton Surveys

  35. Best X-ray spectrum of a z>1 cluster kT~5 keV XMM 800 ks Determination of Fe abundance and redshift in a very distant cluster Abundance independent of z Elements formed at z>1.3! Hashimoto et al 2004 XMM-Newton Surveys

  36. Photoelectric absorption • Medium Survey (XMS) • Slim(0.5-4.5 keV)~10-14 erg cm-2 s-1 • 10% of type 1 AGN are absorbed • (with NH<=1022 cm-2) • 40% of type 2 AGN are absorbed • Deep Survey (Lockman Hole) • Slim(0.5-4.5 keV)~10-14 erg cm-2 s-1 • 15% (<30% at 3) of type 1 AGN • are absorbed (with NH<1022 cm-2) • 80% (>50% at 3) of type 2 AGN • are absorbed. But 5/28 are unabsorbed Mateos et al (2005) Mateos et al (2004) XMM-Newton Surveys

  37. Type 1 AGN (moderately) absorbed in X-rays XMMU J061515.2+710204 S 0.5-4.5 keV= 7.2 x 10-14 erg cm-2 s-1 XMM NH=2.81021 cm-2 z=0.872 L 2-10=3.21044 erg s-1 WHT/ISIS Broad-Line AGN XMM-Newton Surveys

  38. A type 1.9 AGN with no absorption XMM-Newton: Disk + reprocessing Absorption<1020 cm-2 H1320+551, z=0.0653 Seyfert 1.8/1.9 H/H>27 Expected absorption: >1022 cm-2 Barcons, Carrera & Ceballos 2003 XMM-Newton Surveys

  39. 3.5m/TWIN XMM Optical: Seyfert 1.8 Balmer decrement=9 (NH~ 5 1021 cm-2) X-ray: weak absorption (NH~ 7 1020 cm-2) X-ray/optical mismatches: variability? Simultaneous XMM-Newton and 3.5m/CAHA spectroscopy of Mkn 993; z=0.0155 (Changing type Seyfert) Optical spectral type intrinsic to BLR, not due to absorption XMM-Newton Surveys

  40. More type 1.8-2 AGN with no X-ray absorption ESO 602-G031 (Sy 1.8) UGC 12138 (Sy 1.8) soft component soft component z=0.0337 z=0.0250 MRK 702 (Sy 1.9) No or very low intrinsic absorption !!! soft component Lehmann et al 04 XMM-Newton Surveys z=0.0356

  41. Type 2 AGN without absorption (Lockman Hole deep survey) Type 2 AGN (narrow lines only) z=0.711 =1.8 NH=0 Mateos et al 2005 XMM-Newton Surveys

  42. XMM AAT/2dF (Mat Page) NH~5 1022 cm-2 Type-2 Radio-Quiet QSOs z=2.978 (Ly, CIV, CIII]) X-ray flux (2-10 keV) = 8 10-15 erg cm-2 s-1 Intrinsic X-ray luminosity = 4 1044 erg s-1 XMM-Newton Surveys

  43. z=0.044 LX=1042 erg/s TNG Subaru Optically dull, X-ray luminous galaxies Severgnini et al (2003) XMM =1.7 NH=2 1023 cm-2 XMM-Newton Surveys

  44. Optically dull, X-ray luminous galaxies (“Fiore 3”) R=18, z=0.15 Early type galaxy Flux (2-10 keV)= 3 10-14 erg cm-2 s-1 Comastri et al 2002 XMM-Newton Surveys

More Related