1 / 34

Master thesis Thermal dispersion in porous media: Numerical model and physical insights

Master thesis Thermal dispersion in porous media: Numerical model and physical insights 2 2. August 2017 Tuong Vi Tran ( B.Sc .). Table of content. Introduction Mathematical model Software application (OpenGeoSys) Set up vertical flow oriented problem Numerical studies

camdyn
Download Presentation

Master thesis Thermal dispersion in porous media: Numerical model and physical insights

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Master thesis Thermal dispersion in porous media: Numerical model and physical insights 22. August 2017 Tuong Vi Tran (B.Sc.)

  2. Table of content • Introduction • Mathematical model • Software application (OpenGeoSys) • Set up vertical flow oriented problem • Numerical studies • Convergence study • Result & Discussion • Comparison to analytical reference solution • Rayleigh [102, 103,104] • Nusselt number • Thermal grid Peclet number • Comparison three existing thermal dispersion tensor (Bear-Scheidegger, no dispersion, equivalent dispersion using analytical model • Summary and outlook

  3. Problem definition • Water Simple problem: Widely used as benchmark and to understand physics • porous media in a closed box • Isotropic permeability • Homogenous

  4. Mathematical model

  5. Mathematical Model • Governing equations • 2D steady state flow • Fluid mass conservation (continuity) • Linear momentum conservation (Darcy’s law) • Boussinesq Approximation in PCS_TYPE LIQUID FLOW Q1: isgravityeffectalreadysetasdefault in OGS?? @Aaron in MFP Introduction

  6. Mathematical Model • Governing equations • Energy conservation • Thermal diffusivity • Thermal dispersion tensor in PCS_TYPE HEAT_TRANSPORT • ks, e, rho C considered alpha_L & alpha_Tconsidered Introduction

  7. Non dimensional numbers • Rayleigh number • Nusseltnumber • Thermal gridPecletnumber Q2: Ra considerationthroughalpha – e?!? tried : e = 0.3092 & 1,xx due tobackwardscalculation @Marwan & Prof. Graf-> e = const = 0.3092 & k variabel

  8. Non dimensional numbers • Rayleigh number Q3: Change of solid properties? Whichpropertieswereused in benchmarkproblem? @Marwan

  9. Parameter Introduction

  10. Software application - OpenGeoSys

  11. Set up vertical flow oriented problem

  12. Schedule : Goal • Working skript (iteration, nofailure in writing) • Nodispersion • Withdispersion • Changingparameterstogetreasonableresults

  13. Problem definition Boundarycondition = = • Initial condition • T = 273.15 [K] • p = 0 [Pa] • u = 0 [m s-1] • v = 0 [m s-1]

  14. General Structure Input Files Processfile (*.pcs) # MAIN_KEYWORD1 $SUB_KEYWORD1 valuevaluevalue $SUB_KEYWORD2 valuevalue # MAIN_KEYWORD2 $SUB_KEYWORD1 valuevalue [..] # STOP • 2D thermal Dispersion in PM #PROCESS $PCS_TYPE LIQUID_FLOW $NUM_TYPE NEW $BOUNDARY_CONDITION_OUTPUT #PROCESS $PCS_TYPE HEAT_TRANSPORT $NUM_TYPE NEW $BOUNDARY_CONDITION_OUTPUT #STOP

  15. Geometry file (*.gli) #POINTS 0 0 0 0 $NAME POINT0 1 1 0 0 $NAME POINT1 2 1 1 0 $NAME POINT2 3 0 1 0 $NAME POINT3 #POLYLINE $NAME PLY_0 $POINTS 0 1 2 3 0 #POLYLINE $NAME LEFT $POINTS 0 3 #POLYLINE $NAME RIGHT $POINTS 1 2 #SURFACE $NAME SURF_0 $POLYLINES PLY_0 $TYPE 0 #STOP

  16. Meshfile (*.msh) #FEM_MSH $PCS_TYPE NO_PCS $NODES 1089 0 0 0 0 1 1 0 0 2 1 0 1 3 0 0 1 4 .031249999999942 0 0 5 6.24999999998734E-02 0 0 6 9.37499999998264E-02 0 0 7 .124999999999779 0 0 8 .156249999999689 0 0 9 .187499999999599 0 0 10 .218749999999509 0 0 [...] 1087 9.37500000069132E-02 0 .468750000008495 1088 3.12500000023044E-02 0 .468750000004119 $ELEMENTS 1024 0 0 quad 3 97 355 96 1 0 quad 97 98 353 355 2 0 quad 355 353 179 354 3 0 quad 96 355 354 95 4 0 quad 98 99 358 353 5 0 quad 99 100 356 358 6 0 quad 358 356 177 357 7 0 quad 353 358 357 179 8 0 quad 179 357 362 361 […] Gridsize: 32 x 32 elements Δ

  17. Boundaryconditions (*.bc) #BOUNDARY_CONDITION $PCS_TYPE LIQUID_FLOW $PRIMARY_VARIABLE PRESSURE1 $GEO_TYPE POINT POINT3 $DIS_TYPE CONSTANT 0.0 #BOUNDARY_CONDITION $PCS_TYPE HEAT_TRANSPORT $PRIMARY_VARIABLE TEMPERATURE1 $GEO_TYPE POLYLINE LEFT $DIS_TYPE CONSTANT 274.15 #BOUNDARY_CONDITION $PCS_TYPE HEAT_TRANSPORT $PRIMARY_VARIABLE TEMPERATURE1 $GEO_TYPE POLYLINE RIGHT $DIS_TYPE CONSTANT 273.15 #STOP

  18. Initial conditions (*.ic) #INITIAL_CONDITION $PCS_TYPE LIQUID_FLOW $PRIMARY_VARIABLE PRESSURE1 $GEO_TYPE DOMAIN $DIS_TYPE GRADIENT 1 0 10000 #INITIAL_CONDITION $PCS_TYPE HEAT_TRANSPORT $PRIMARY_VARIABLE TEMPERATURE1 $GEO_TYPE DOMAIN $DIS_TYPE CONSTANT 273.15 #STOP

  19. Fluid Property file (*.mfp) #FLUID_PROPERTIES $FLUID_TYPE LIQUID $PCS_TYPE PRESSURE1 TEMPERATURE1 $DENSITY 4 1000 273.15 0.01 $VISCOSITY 1 0.001 $SPECIFIC_HEAT_CAPACITY 1 4200.0 $HEAT_CONDUCTIVITY 1 0.65 $TEMPERATURE 273.15 $GRAVITY 9.81 #STOP #FLUID_PROPERTIES $FLUID_TYPE LIQUID $DENSITY 4 1000 273.15 1e-5 $VISCOSITY 1 0.001 $SPECIFIC_HEAT_CAPACITY 1 4200.0 $HEAT_CONDUCTIVITY 1 0.65 #STOP 4 due to density temperature dependency

  20. Material Property file (*.mmp) (1) #MEDIUM_PROPERTIES $GEOMETRY_DIMENSION 2 $POROSITY 1 0.1 $TORTUOSITY 1 1.0e+000 $PERMERABILITY_TENSOR ISOTROPIC 4.84404e-13 $STORAGE 1 0.0 $HEAT_DISPERSION 1 0 0 #STOP #MEDIUM_PROPERTIES $GEOMETRY_DIMENSION 2 $POROSITY 1 0.30925 $TORTUOSITY 1 1.0e+000 $PERMERABILITY_TENSOR ISOTROPIC 1e-9 $STORAGE 1 0.0 $HEAT_DISPERSION 1 0.1 0.01 #STOP ; Isotropic

  21. Solid Property file (*.msp) #SOLID_PROPERTIES $DENSITY 4 2.5 $THERMAL EXPANSION 0.01 CAPACITY 1 850.0 CONDUCTIVITY 1 1.591444 #STOP #SOLID_PROPERTIES $DENSITY 4 2.5 $THERMAL EXPANSION 1.0e-005 CAPACITY 1 850.0 CONDUCTIVITY 1 1.591444 #STOP CONDUCTIVITY 1 3 Q3: Change of solid properties? Whichpropertieswereused in benchmarkproblem? @Marwan

  22. Numericfile (*.num) $OVERALL_COUPLING 2 1000 #NUMERICS $PCS_TYPE LIQUID_FLOW $LINEAR_SOLVER ; method error_tolerancemax_iterations theta precond storage 2 2 1.e-016 10000 1.0 100 4 $COUPLING_CONTROL ERNORM 1e-3 $ELE_UPWINDING .5 #NUMERICS $PCS_TYPE HEAT_TRANSPORT $LINEAR_SOLVER ; method error_tolerancemax_iterations theta precond storage 2 5 1.e-012 1000 1.0 100 4 $ELE_GAUSS_POINTS 2 $COUPLING_CONTROL ERNORM 1e-3 $ELE_UPWINDING .5 #STOP $OVERALL_COUPLING 2 1000 #NUMERICS $PCS_TYPE LIQUID_FLOW $LINEAR_SOLVER ; method error_tolerancemax_iterations theta precond storage 3 2 1.e-016 10000 1.0 100 4 $COUPLING_CONTROL ERNORM 1e-3 $ELE_UPWINDING .5 #NUMERICS $PCS_TYPE HEAT_TRANSPORT $LINEAR_SOLVER ; method error_tolerancemax_iterations theta precond storage 3 5 1.e-012 1000 1.0 100 4 $NON_LINEAR_ITERATIONS ;type---error_method--- max_iterations--relacation -- tolerance(s) PICARD LMAX 25 0.0 1.e-3 $ELE_GAUSS_POINTS 2 $COUPLING_CONTROL ERNORM 1e-3 $ELE_UPWINDING .5 #STOP

  23. Time step control file (*.tim) #TIME_STEPPING $PCS_PROCESS LIQUID_FLOW $TIME_START 0.0 $TIME_END 138474340 $TIME_STEPS 1 1e-9 1 1e-5 1 1e-2 10 1 11 30 60 60 600 600 600 1800 #TIME_STEPPING $PCS_TYPE HEAT_TRANSPORT $TIME_START 0.0 $TIME_END 138474340 $TIME_STEPS 1 1e-9 1 1e-5 1 1e-2 10 1 11 30 60 60 600 600 600 1800 #STOP after 1s, 10s, 30s, 1min, 10 min, 30min total simulation ~ 16.6 d #TIME_STEPPING $PCS_PROCESS LIQUID_FLOW $TIME_START 0.0 $TIME_END 138474340 $TIME_STEPS 1 1e-9 1 1e-5 1 1e-2 10 1 11 30 60 60 600 600 600 1800 504 3600 365 86400 30 864000 30 2592000 #TIME_STEPPING $PCS_TYPE HEAT_TRANSPORT $TIME_START 0.0 $TIME_END 138474340 $TIME_STEPS 1 1e-9 1 1e-5 1 1e-2 10 1 11 30 60 60 600 600 600 1800 504 3600 365 86400 30 864000 30 2592000 #STOP after 1s, 10s, 30s, 1min, 10 min, 30min, 1h, 24h, 10d, 30d total simulation 4.39 a

  24. Output file (*.out) #OUTPUT $NOD_VALUES PRESSURE1 TEMPERATURE1 $ELE_VALUES VELOCITY1_X VELOCITY1_Z $GEO_TYPE DOMAIN $DAT_TYPE PVD $TIM_TYPE STEPS 1 #OUTPUT $NOD_VALUES PRESSURE1 TEMPERATURE1 $ELE_VALUES VELOCITY1_X VELOCITY1_Z $GEO_TYPE DOMAIN $DAT_TYPE TECPLOT $TIM_TYPE STEPS 1 #STOP #OUTPUT $NOD_VALUES PRESSURE1 TEMPERATURE1 $ELE_VALUES VELOCITY1_X VELOCITY1_Y $GEO_TYPE DOMAIN $DAT_TYPE PVD $TIM_TYPE STEPS 1 #STOP

  25. Numericalstudies

  26. Temperature distribution Studies

  27. Temperature distribution Studies

  28. Temperature distribution Studies

  29. Velocity x directiondistribution Denstiyeffect -> againstclockwise flow… Central region -> slowmotion Studies

  30. Velocity z directiondistribution Studies

  31. Velocity [magnitude] distribution Studies

  32. Summary andoutlook

  33. Next step Summary

More Related