1 / 23

Simulator Development for Neuron-based Molecular Communication

Explore nanoscale communication and the fundamental components of neurons for the development of neuron-based molecular communication systems. Learn about molecular communication using neurons and the optimization framework for Neuron-based IBSANs. Discover the structure of neurons, neuronal networks, and neuron-to-neuron communication via synapses. Dive into the action potential, neurotransmitters, and signaling mechanisms in neural networks. Gain insights into the proposed communication framework, including Neuronal TDMA and its optimization objectives. Stay informed about the current status and future prospects of molecular communication integration with nanomachines.

Download Presentation

Simulator Development for Neuron-based Molecular Communication

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simulator Development forNeuron-basedMolecular Communication • Jun Suzuki • UMass Boston

  2. Background

  3. Nanoscale Communication • An emerging research paradigm that aims to provide communication capabilities between nanoscale machines (nanomachines). • The first publication at 2005 • Nanomachine • The most basic functional unit in nanoscale systems. • Scale: one to a few hundred nanometers. • Consists of biological materials (e.g., molecules) and perform very simple computation, sensing and/or actuation tasks.

  4. Nanomachines

  5. Two Major Approaches toNanoscale Communication • Electromagnetic communication • Top-down miniaturization approach • Molecular communication • Bottom-up approach • Inspired by the communication mechanisms that naturally occur among living cells. • Utilizes molecules as a communication medium. • Several advantages over electromagnetic communication • Inherent nanometer scale, biocompatibility and energy efficiency • A major application domain: in-body nanonetworks • Nanomachines are networked through molecular communication to perform sensing and actuation tasks in the body for biomedical and prosthetic purposes. • e.g., vital information sensing, targeted drug release and neural signal augmentation.

  6. Short- and Long-rangeMolecular Communication • Short-range communication • nanometers to millimeters • Uses molecular motors, calcium signaling and bacteria communication • Long-range communication • millimeters to meters • Uses neurons.

  7. Neurons • Fundamental components of the nervous system. • The central nervous system • the brain, spinal cord and retina • The peripheral nervous system • sensory neurons, clusters of neurons called ganglia • Electrically excitable cells • Process and transmit information by electrical and chemical signaling.

  8. The Structure of an Neuron • Cell body (soma) • 4 to 100 um in diameter • Dendrites • Up to a few hundred um in length • Thin structures that arise from the soma • Form a complex “dendritic tree.” • the majority of inputs to a neuron • Generate the majority of inputs to a neuron. Dendrite Axon terminal Node of ranvier Soma Axon Shwann cell Nucleus Myelin sheath

  9. An axon • Up to 1 m in humans • A special cellular extension that arises from the soma. • Branches hundreds, or even thousands, of times before it terminates. • Travels thru the body in bundles called nerves. Dendrite Axon terminal Node of ranvier Soma Axon Shwann cell Nucleus Myelin sheath

  10. Neuronal Network • Neurons self-organize to connect each other and form a network.

  11. Neuron-to-Neuron Communication • Neurons communicate with others via synapses. • A synapse • A membrane-to-membrane junction • Contains molecular machinery that allows a (presynaptic) neuron to transmit a chemical signal to another (postsynaptic) neuron. • An axon makes thousands of synaptic contacts. Signal Synapse Presynaptic Neuron Postsynaptic Neuron

  12. Neurotransmitters • When an axon terminal is stimulated with an electric signal, it initiates a chemical process in a synapse. • Generates neurotransmitter molecules. • e.g., Acetylcholine (ACh) • Neurotransmitters electrically excites a postsynaptic neuron.

  13. Action Potential • When a neuron is electrically excited, it generates an electrochemical pulse called action potential. • The refractory period follows a signal transmission. • Signal transmission speed: 90 m (295 fts, 98 yds)/second

  14. Neuron-based IBSANs

  15. The Proposed Communication Framework for Neuron-based IBSANs • Neuronal TDMA • TDMA (Time Division Multiple Access) protocol framework

  16. TDMA Optimization • Which neuron should start signaling in a given time slot? • Assumption: Each neuron transmits at least one signal in the signaling cycle. • Optimization objectives • Signaling yield • How many signals the sink receives from all sensors during the scheduling cycle. • Signaling fairness among sensors • How fairly/equally sensors access the shared neuronal network. • Signaling delay • A multiobjective optimization problem

  17. Current Status • A multiobjective genetic algorithm (GA) has been developed and tested. • Can optimize TDMA scheduling by balancing the trade-offs among 3 objectives.

  18. What’s the Future of MolCom? • Nanomachine development has been actively carried out in the academia and industry. • Molecular communication protocols/mechanisms have been studied through simulations in the academia since mid ’00. • Practical nanomachines will be developed in 10 (?) years. • Molecular communication will be integrated with nanomachines. • Applications • Metical monitoring • Prosthetic and rehabilitation devices

  19. Cellular System Development and TDMA • TDMA • is/was used in 2G cellular systems such as GSM. • is still widely used in satellite systems. • was extensively studied in the academia for wireless communication in 70s and early 80s • through simulations. • GSM • The standardization of GSM started in ’82 and completed in ’90. • The first GSM call in 1991. • Practically usable cell phones became available on the market around 1993 - 1995. • GSM subscribers worldwide passed 10M in 1995, 100M in 1998, 500M in 2001, 1B in 2004 and 2B in 2008. • Has been fading out as 3G and 4G systems emerge.

  20. CS682/3 Project:A Generic Simulation Environment forNeuronal TDMA

  21. Architectural Overview • Neuronal Network Visualizer/Editor • Aids the user to manually draw neuronal networks in 2D/3D • Performs several visualization effects • e.g., zoom in, zoom out, etc. • Generates/serializes a text file (in XML?) according to a drawn neuronal network and stores it in the local disk or a remote cloud (e.g., Dropbox and Google Drive). • Reads a text file and visualize a neuronal network. Topology Data Generator Optimization Code Opt. Algo. (NSGA-II) Opt. Engine (jMetal) Topology Data (XML?) GUI Frontend Topology Data Reader Optimization Code Opt. Algo. (Simplex) Opt. Engine (GLPK) Manual 2D/3D topology editor Automatic Topology Generator

  22. Automatic Topology Generator • Artificially grow neuronal networks based on a topology construction algorithm(s) and serializes their topology information in text files (XML?). • Optimization Code • I/F code to run optimization algorithms with a given neuronal network topology. Topology Data Generator Optimization Code Opt. Algo. (NSGA-II) Opt. Engine (jMetal) Topology Data (XML?) GUI Frontend Topology Data Reader Optimization Code Opt. Algo. (Simplex) Opt. Engine (GLPK) Manual 2D/3D topology editor Automatic Topology Generator

  23. What You can Gain from this Project. • Extensive Java programming • GUI, 2D/3D visualization, text data handling, optimization, self-organizing topology formation • Very futuristic research experience • Potential co-authored publications (if you are interested)

More Related