1 / 34

Carlos de los Heros Division of High Energy Physics Uppsala University Partikeldagarna

STATUS OF AMANDA AND ICECUBE. Carlos de los Heros Division of High Energy Physics Uppsala University Partikeldagarna Karlstad, March 31st-April 1st 2004. The AMANDA/ICECUBE Collaborations. Bartol Research Institute UC Berkeley UC Irvine Pennsylvania State UW Madison

caron
Download Presentation

Carlos de los Heros Division of High Energy Physics Uppsala University Partikeldagarna

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STATUS OF AMANDA AND ICECUBE Carlos de los Heros Division of High Energy Physics Uppsala University Partikeldagarna Karlstad, March 31st-April 1st 2004

  2. The AMANDA/ICECUBE Collaborations Bartol Research Institute UC Berkeley UC Irvine Pennsylvania State UW Madison UW River Falls LBNL Berkeley 150 members U. Simón Bolivar, Caracas VUB-IIHE, Brussel ULB-IIHE, Bruxelles Université de Mons-Hainaut Imperial College, London DESY, Zeuthen Mainz Universität +University of Maryland, US Clark-Atlanta University, US Southern University, US IAS, Princeton, US University of Alabama, US University of Oxford, UK University of Utrecht, NL Chiba University, Japan U. of Canterbury, Christchutch, NZ as ICECUBE members Wuppertal Universität Stockholm Universitet Uppsala Universitet Kalmar Universitet South Pole Station

  3. Number of institutions Chiba, ICL, Utrecht Caracas, Alabama Canterbury Mons, Maryland, River Falls Clark-Atlamta, IAS, Southern, Kansas Brussels, VUB ULB Mainz, Wuppertal UC Irvine, Stockholm ,Uppsala IceCube LBNL, Penn UC Berkeley, Wisconsin Bartol DESY AMANDA

  4. THE SWEDISH GROUPS • Uppsala: Finance • O. Botner UU/VR • A. Hallgren UU/VR • C. de los Heros VR • A. Bouchta VR Grad students: • A. Davour • J. Lundberg • A. Pohl Technicians: • B. Hagberg (35%) Grants: • Travel VR 325kSEK 02-04 • C.d.l.H. VR 135kSEK/yr (02-05) • Stockholm: Finance • P. O. Hulth SU • K. Hultqvist SU/VR • C. Walck SU/VR • S. Hundertmark SU • C. Bohm SU Grad students: • Y. Minaeva • T. Burgess • C. Wiedemann • P. Ekström Technicians: • L. Thollander (100%) Grants: • Travel VR 650kSEK 02-04 36 MSEK (VR+Wallenberg) for IceCube instrumentation (managed by SU+UU)

  5. NEUTRINO ASTRONOMY • Cosmic rays @ >>TeV exist  acceleration sites must sit somewhere • SNe remnants • Active Galactic Nuclei • Gamma Ray Burst • Exotics (decays of topological defects...) explained by SN proton acceleration ? unexplained • Guaranteed sources: • atmospheric neutrinos (from p & K mesons decay) • galactic plane: • CR interacting with ISM, concentrated on the disk • cosmological neutrinos: • extragalactic origin of UHECR: p g D+ n p+ (p p0) • Neutrinos: not absorbed, not deflected:  difficult to detect • Protons: deflected in magnetic fields, GZK • g-rays: propagate straight, however: • reprocessed in sources • absorbed in IR (100 TeV) and 3K (10 PeV)

  6. O(km) long muon tracks  15 m  constant detectability for E-2 source THE AMANDA DETECTOR determination of the trajectory by Cherenkov light timing 19 strings 677 PMTs trigger rate: 80 Hz noise rate: 1 kHz • up/down  10-5 background from • a) misreconstructed atmospheric muons • b) coincident muons • muon range scales with log(Em) • sCC/En cte up to 10 TeV

  7. THE SITE geographic South Pole AMANDA 2km deep

  8. DAILY WORK COMMUTE. NO TRAFFIC JAMS

  9. DETECTOR MEDIUM: ICE PROPERTIES • Bubbles vs. depth • Dust layers • Drill-hole bubbles ice optical parameters: labs ~ 110 m @ 400 nm lscatt ~ 20 m @ 400 nm drill studies atmospheric muons in-situ light sources

  10. ~ 5 m ALL FLAVOUR DETECTION Electromagnetic and hadronic cascades •  : oscillation + regeneration at PeV •  important • no EM / hadronic cascade differentiation • (even if slightly different shape and lower • light output for hadronic cascades)

  11.  effective area (schematic): -interaction in earth, detector response En 2 100 GeV 100 TeV 100 PeV DETECTOR CAPABILITIES • muons: • directional error: 2.0° - 2.5° • energy resolution:0.3 – 0.4 • coverage: 2 • primary cosmic rays:(+ SPASE2) • energy resolution:0.07 – 0.10 • „cascades“: (e±,  , neutral current) • zenith error: 30° - 40° • energy resolution: 0.1 – 0.2 (5TeV < E < 5 PeV) • coverage: 4 5m2 3 cm2

  12. AMANDA PHYSICS TOPICS Cosmology /Particle Physics/Astrophysics • Dark matter / exotic particles: neutralinos, magnetic monopoles, extra dim. • solar WIMP’s signature: Excess from the Sun direction • heavy and slow particles • primary CR spectrum / charm production •  atmospheric muons / neutrinos (also calibration of Amanda) •  CR composition (with surface detector SPASE-2) • cosmogenic flux: top-down scenario from topological decays •  extra-terrestrial diffuse flux • CR origin / acceleration sites (AGN, GRBs) •  extra-terrestrial flux (diffuse / punctual / transient) • SN monitor of the milky way •  low energyEM cascades (global noise increase throughout Amanda)

  13. SWEDISH ACTIVITIES • Physics analyses: • Dark matter searches (WIMP, K-K, Simpzillas). AD, YM, CPH, TB, PE • UHE neutrinos. SH, CW • Point source searches. JL • Monopole searches. AP • Software • AMANDA simulation. SH, CW • IceCube simulation/reconstruction. SH, AB, TB, CW • Management • IceCube collaboration board. PO, OB • PO Icecube spokesperson • KH IceCube simulation coordinator • AH AMANDA analysis coordinator • CdlH AMANDA software coordinator • Hardware • AMANDA trigger (AH, Pawel Marcinewski) • AMANDA amplifiers (PO, LT)

  14. „AGN“ with 10-5 E-2 GeV-1 cm-2 s-1 sr-1 atm. Exp. cut TeV-PeV DIFFUSE FLUX • data sample ’97 • hit channels multiplicity as energy indicator • cuts optimized for best sensitivity assuming a E-2 flux (6 TeV < En < 1 PeV) : NO EXCESS OBSERVED E2nm(E) < 8.4 10-7 GeV cm-2 s-1 sr-1 PRL 90 (2003), 251101

  15. DIFFUSE FLUX (cascades) • 2000 data sample, 197 days lifetime • sim. BG: • atm. muons • atm. neutrinos PRELIMINARY no earth propagation effects nt nm ne

  16. DIFFUSE FLUX (cascades) • sensitivity to all three flavors • some AGN core models discarded • assuming a E-2 flux • (50 TeV < En < 5 PeV): PRELIMINARY SDSS UHE analysis E2all (E) < 8.6·10 – 7 GeV cm-2 s-1 sr-1 (e::=1:1:1) MPR paper internally refereed From data sample ’97, 130 days lifetime (5 TeV < En < 300 TeV): E2all (E) < 9.8·10– 6 GeV cm-2 s-1 sr-1 (e::=1:1:1) E2ne(E) < 6.5·10– 6 GeV cm-2 s-1 sr-1 Phys. Rev. D67, 2003

  17. n m 10-6 E-2 Neural Net Parameter „NN2“ for neutrino vs.atm muon separation assuming a E-2 flux (1 PeV < En < 3 EeV) : NO EXCESS OBSERVED E2all (E) < 1.510-6 GeV cm-2 s-1 sr-1 (e::=1:1:1) paper in progress UHE neutrinos downward muons and muons close to horizon PRELIMINARY Experiment CORSIKA MC R> 10 km Simulated UHE event • data sample ’97 • (131 days acquisition) • uncertainties on • neutrino cross section • muon propagation • primary flux normalization • & elemental composition

  18. POINT SOURCE SEARCHES below horizon: mostly atmospheric ‘s (this means northern sky) Search for an event excess in the northern sky  grid: sky subdivided into 300 bins ~7°x7° • cuts optimized in each declination band • sensitivity  flat up to horizon, • (in average 4 times better than 1997 analysis, above horizon:mostly fake events Astrophys. J. 583, 2003) 699 neutrino events observed from below the horizon (2000 data) <10% non-neutrino background for >5° no clustering observed: no evidence for point sources declination averaged sensitivity (integrated above 10 GeV) : lim  2.3·10-8 cm-2s-1 upper limits in units of 10-7cm-2s-1 integrated above En=10 GeV, for an assumed E-2 spectral shape Phys. Rev. Lett. 92, 2004

  19. FLUX LIMITS ON SELECTED SOURCES upper limits in units of 10-8cm-2s-1 for an assumed E-2 spectral shape integrated above En=10 GeV Sensitivity at the level of TeV g-ray flux (’97 active state) AMANDA-II achieved the sensitivity to search for neutrinos from TeV g-ray sources (n/g~1)

  20. assuming Waxmann-Bahcall spectrum (EB at 100 TeV and G = 300) : NO EXCESS OBSERVED 4.8 x 10-8 GeV s-1 cm-2 sr-1 SEARCH FOR CORRELATED WITH GRBs 10 min Low background due to space and time coincidence PRELIMINARY • analysis is blind: finalized off-source • (±5 min) with MC signal • <20° + other event quality parameters • BG stability required within ±1 hour from burst effective -area  50000 m2

  21. WIMPS FROM THE SUN analysis possible thanks to improved reconstruction capability for horizontal tracks, compared to Amanda B-10 • Sensitivity on the muon flux coming from neutralino annihilations in the center of the Sun: • (soft channel) • (hard channel) Exclusion sensitivity from analyzing the off-source bins Best sensitivity of existing indirect searches

  22. ATMOSPHERIC NEUTRINOS WITH AMANDA Atmospheric muons and neutrinos: AMANDA‘s test beams PRELIMINARY • Neural network energy reconstruction • regularized unfolding •  spectrum up to 100 TeV • results compatible with Frejus data Possible to use the energy spectrum to study excess due to cosmic ‘s

  23. AMANDA Publications/yr

  24. ICECUBE

  25. ICETOP: COINCIDENT EVENTS • Two functions • veto and calibration • cosmic-ray physics • Energy range: • ~3 x 1014 -- 1018 eV • few to thousands of muons per event • Large solid angle • One IceTop station per hole • ~ 0.5 sr for C-R physics with “contained” trajectories • Larger aperture as veto

  26. ICECUBE STRING AND DOM HV Base Flasher Board Main Board OM spacing 17m 10” PMT 13” Glass sphere • 3 Production and testing Facilities • UW-Madison (PSL) • DESY (Germany) • Stockholm/Uppsala (Sweden)

  27. PRODUCTION SCHEDULE We start now!

  28. AMANDA-II TRACK RECONSTRUCTION IN A LOW NOISE ENVIRONMENT 10 TeV • Typical event: 30 - 100 PMT fired • Track length: 0.5 - 1.5 km • Flight time: ≈ 4 µsecs • Accidental noise pulses: 10 p.e. / 5000 PMT/4µsec Important Detector Parameters (astro/ph:0305196): • Angular resolution: 0.7 degrees • Effective muon detector area: 1 km (after background suppression) 1 km

  29. ENERGY RECONSTRUCTION Eµ=6 PeV ≈ 1000 hits Small detectors: Muon energy is difficult to measure because of fluctuations in dE/dx IceCube: Integration over large sampling and scattering of light reduces the fluctuations in energy loss. --> Require large dynamic range in amplitude. Eµ=10 TeV ≈ 90 hits

  30. RECENT RESULTS • Four Digital Optical Modules (DOM) plus a DOM Hub are collecting IceTop data using test software • Successfully synchronized with GPS time • Data compared with SPASE • Successfully transferring data from the DOM to DOM Hub to Data Collection program @ PSL • Remotely setting DOM parameters • Recording DOM Monitor, Configuration, and PMT hit data for analysis by DOM Test software • Involves software developed at LBNL, UW and PSU

  31. OUTLOOK • First results from AMANDA-II published • papers from analysis of 97-2000+ data in progress • combined analysis ’00-’03 on their way • Amanda-II detector shows greatly improved capabilities • digitized readout since 2003: waveform resolution • ice description mature • first IceCube strings in 2004/05

  32. Feb 2004 U.S. contribution $266.7M Non-U.S. contribution ~$30.2M Total Project Cost $296M PROJECT COST

  33. SPASE-2 AMANDA  composition change around the knee paper in preparation SPASE/AMANDA: CR composition SPASE-2  electron AMANDA B10  muon Iron AMANDA (number of muons) Proton log(E/PeV) SPASE-2 (number of electrons) Amanda-B10 / Spase-2 calibration: accepted

More Related