1 / 31

Contest format

Contest format. 5 hours, around 8-12 problems One computer running (likely)Linux, plus printer 3 people on one machine No cell phones, calculators, USB drives, Internet (C++ STL available, cplusplus.com and java api’s are available)

carsyn
Download Presentation

Contest format

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Contest format • 5 hours, around 8-12 problems • One computer running (likely)Linux, plus printer • 3 people on one machine • No cell phones, calculators, USB drives, Internet (C++ STL available, cplusplus.com and java api’s are available) • All the paper resources you want, including books, print outs of code, anything! • If it fits in the van, bring it!

  2. Scoring • Sorted first by number of problems solved • Then sorted by time • If you submit a problem at :30 and one at 1:30, your total time is 120 minutes • Find the easy problems and do them first!!! • Watch the standings and see what other teams are doing! • 20 minute penalty for wrong answer on a single submission, but it’s only counted if you eventually solve that problem

  3. Submitting • You will receive one of several responses: • Format error • Time limit reached • Runtime error (division by 0, out of memory, exception thrown, etc.) • Compile error • Wrong answer • Correct! • The judges only give you one at a time • If you have two or more problems, you’ll usually only get the more embarrassing of them

  4. Always have someone typing • Typing and compiling is time intensive, and there’s only one keyboard • If your program isn’t working, print it and debug it by hand • Let someone else sit and type! • If you’re waiting for the computer, write some code out by handor ask a neighbor for their opinion on your algorithm • If it has you read until end of input, use:while (cin >> x)

  5. Questions • You can submit questions to the judges about problems • Updates will be given to everyone if there is a typo or other error • You will get one of two responses: • A clarification • No answer (i.e. read the problem more closely)

  6. Test the judge’s input • They give you 1 or 2 sample inputs and solutions; test them! • There will normally be simple cases. • Make sure your format exactly matches the judge’s sample output! • They use a file compare (via a script) so it must be very close

  7. End cases • The judges are very tricky with their tests • If the problem says inputs will be between A and B, you can almost bet that inputs of size A and B will be tested • Be wary of carefully worded questions!

  8. Tree or not a tree • A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties: • There is exactly one node, called the root, to which no directed edges point. • Every node except the root has exactly one edge pointing to it. • There is a unique sequence of directed edges from the root to each node.

  9. Counting characters in a range • Input will consist of two integers, 0 < N < 100 • For each of the numbers in between these two numbers (inclusive), count the occurrences of each digit • Example: 17 21 • 17 18 19 20 21 • 0=>1 7=>11=>4 8=>12=>2 9=>1 • cin >> a >> b;for (i = a; i <= b; ++i){ ++arr[i / 10]; ++arr[i % 10];} • 17 21 ? • 21 17 ?

  10. Be generous with your memory! • Make your arrays twice as big as necessary • Off by one error are difficult to find! • Use the STL (strings, vectors, everything!) • Use long long instead of int • Use double instead of float

  11. Code quickly at the cost of efficiency • The faster you type, the faster you submit! • Use the STL if it makes it easier for you • If you can’t remember how to use the STL sort, write a simple (bubble?)sort. Who cares! • Generally, if you get a “time limit reached”, your algorithm needs to be changed, not just little things in your code

  12. Helpful suggestion • Bring printed code, such as the algorithms we’ll talk about. • You won’t have to remember them and know you have a working/correct version too. • If someone is not typing in an answer, type in the algorithm so the template is ready to use. • Also data structures you may want to use (trees for example). • Including a “read a file” code. You know it works, then one least thing to think about.

  13. math • Number theory • Very popular in the program contests • For ICPC, you need a rather small but useful set • Prime table generation, primality testing, greatest common divisor, modular arithmetic and congruence (solving linear congruences), and Euler’s • A Note, Java’s BigInteger class has a number of number-theoretic functions, like gcd, modular exponentiation, primality testing, etc.

  14. String manipulation • There have been a number of string manipulation questions over the years. • Learn the string library • At the least substring, replace, find etc. • Regex maybe really helpful.

  15. algorithms • Brute force algorithms • From nested loop algorithms to backtracking (easier with recursion). • Breath first search. • Depth first search is recursive and has nice bracktracking features. • Dynamic Programming • Recursive algorithm that is composed of subproblems • Coin flipping and fibonacci are simple examples • Longest Common Subsequence (LCS), Longest Increasing Subsequence (LIS), Optimal Binary Search tree (OBST), 0-1 knapsack, edit distance, Matrix Chain Product are increasing harder examples.

  16. algorithms • Trees and priority queues, not necessary an algorithms, but can speed things up. • Graph theory • How to represent things and then use BFS and DFS, and topological sorting. • Does the graph have cycles?

  17. Classic Problems algorithms • Shortest paths (Dijkstrafor example) • Spanning trees (Prim or Kruskal) • Eulerain paths and circuits • Matchings in bipartite graphs • Network flow (max flow, min cost flows) • Geometry.

  18. STL: Deque • #include <deque> • deque<int> x; • x.push_back(20); x.pop_back(); x.back(); x.push_front(20); x.pop_front(); x.front(); • x.resize(100); • x[10] OR x.at(10); • x.clear();

  19. STL: Strings • #include <string> • string str; string str(“foo”); string str(10, ‘c’); • str += “bar”; • Find • str.find(“aaba”); str.rfind(“aaba”); • str.find_first_of(“AEIOU”); • str.find_last_not_of(“AEIOU”, 5); • Returns an int, or string::npos if none found • str.substr(int position, int length)

  20. STL: Algorithms • #include <algorithm> • swap(a, b); // Any type that has = can go here! • reverse(arr, arr + 10);reverse(deq.begin(), deq.end()); • Sorting • sort(arr, arr + 10); sort(deq.begin(), deq.end()); • sort(arr, arr + 10, lessThanFunction);boollessThanFunction(const Type& t1, const Type& t2){ if (t1 < t2) return true; return false;}

  21. STL: Algorithms • #include <algorithm> • Permutationsint x[] = {3, 5, 4, 1, 2};sort(x, x + 5);do { // stuff} while (next_permutation(x, x + 5));

  22. STL: formatting • #include <iomanip> • double d = 12345.6789; • cout << d << endl; • cout << setprecision(3) << d << endl; • cout << setprecision(3) << fixed << d << endl; • cout << setprecision(1) << fixed << 0.55 << endl; • int i = 42; • cout << hex << i << endl; • cout << hex << uppercase << i << endl; • cout << i << endl; • cout << dec << i << endl; • 12345.7 • 1.23e+04 • 12345.679 • 0.6 • 2a • 2A • 2A • 42

  23. Algorithms • Brush up on • depth-first search, breadth-first search (or just use iterative deepening DFS) • N-Trees, but lots of other uses as well. • minimum spanning trees http://en.wikipedia.org/wiki/Minimum_spanning_tree • Lots of varying algorithms listed at the bottom of the page

  24. Algorithms (2) • shortest path, like Dijkstra’s algorithm • http://en.wikipedia.org/wiki/Dijkstra’s_algorithm • http://en.wikipedia.org/wiki/Shortest_path_problem • (Max) flow problems • http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/maxflow/Maxflow.shtml • Good demo of max flow and min cut algorithms. • Also links to some other versions of spanning tree algorithms.

  25. Algorithms (3) • Greatest common divisor is a fun one to remember too • And remember, if gcd(a, b) == 1, then a and b are relatively prime!

  26. Dynamic programming/memoization • Recursive algorithm that is composed of subproblems • You keep recomputing the subproblems! • Save them in an array and look them up • Start with the recursive version first, then modify it to save work • Examples • Fibonacci • Coin problem

  27. Geometric algorithms

  28. Geometric algorithms • Intersection • Four points: a1, a2, b1, b2 • Compute: • dir1 = direction(b1, b2, a1) • dir2 = direction(b1, b2, a2) • dir3 = direction(a1, a2, b1) • dir4 = direction(a1, a2, b2) • If dir1/dir2 are opposite signs, and dir3/dir4 are opposite signs, they intersect

  29. b2 dir1 a2 dir4 dir4 dir2 b2 dir3 dir2 dir3 a2 dir1 b1 b1 a1 a1

  30. 4 5 3 2 1 6

More Related