690 likes | 701 Views
Detailed design and stress modeling of composite pressure vessel for rocket with embedded fuel grain concept. ANSYS analysis and material properties included.
E N D
Project M.E.T.E.O.R. P07109: Flying Rocket Team Andrew Scarlata, Geoff Cassell, Zack Mott, Garett Pickett, Brian Whitbeck, Luke Cadin, David Hall
Composite Pressure Vessel(Chalice Concept) Nitrous Oxide Vapor Liquid Nitrous Oxide • Identified Company (CompositeX) to manufacture Custom Composite Pressure Vessel • Working pressure 1000psi • Holds 8 kg Nitrous Oxide • 700 cubic inch volume • HDPE lined • 1.4 lbs
Composite Pressure Vessel(Chalice Concept) Helium Gas Liquid Nitrous Oxide
Composite Pressure Vessel(Chalice Concept) • Ideal gas law used to model helium pressure • p=m*R*T/V • Verified from pressure/ temperature data that Helium will remain gaseous • Compressibility factor ~1, so ideal gas assumption valid • Tank weights listed estimated from quote of 700ci=1.4 lbs • Also includes weight of Helium (case dependent)
Mass CalculationChalice Design, 7075-T6 Al240mm OD, 1.75mm Thickness, FS 1.25
Mass CalculationEmbedded Outer Shell Design, 7075-T6 Al 180mm OD, 61mm ID, 1.3mm Thickness, FS 1.25
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Model Geometry Inner Shell (fuel grain housing) Outer radius: 2.40” (~61mm) Inner radius: 2.36” (~60mm) Height: 21.46” (~545 m) Mat’l: Aluminum 7075 T6 Outer Shell (NOS/rocket housing) Outer radius: 1.75” + 0.5 mm (0.03225 m) Inner radius: 1.25” (0.03175 m) Height: 1.5” (0.0381 m) Mat’l: Al 7075 T6 with Composite over-wrap Composite: IM7 Carbon (fiber) / PEEK (matrix)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Material Properties Carbon/PEEK Composite (Modeled as Orthotropic) Density: 1600 kg/m3 Longitudinal Mod., E1: 71.7e9 Pa Transverse Mod., E2: 10.2e9 Pa Poisson’s Ratio, v12: 0.30 Shear Modulus, G12: 5.7e9 Al 7075-T6 (Modeled as Isotropic) Density: 2810 kg/m3 Longitudinal Mod., E1: 71.7e9 Pa Poisson’s Ratio, v12: 0.33 PEEK (matrix) Density: 1376 kg/m3 IM7 Carbon Fiber (12,000 filaments) (Modeled as Orthotropic) Density: 1780 kg/m3 Longitudinal Mod., E1: 278e9 Pa Poisson’s Ratio, v12: 0.20
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 1: Outer Shell of Imbedded Fuel Grain Design (Meshed Elements – 8node93)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 2: Outer Shell of Imbedded Fuel Grain Design: Plot Results Contour Plot Element Solution Stresses von Mises stress
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 3: Outer Shell of Imbedded Fuel Grain Design: Plot Results Deformed Shape Def + undeformed
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 4: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Rotated view)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 5: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Front View)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 6: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Side View)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 7: Inner Shell of Imbedded Fuel Grain Design (Meshed Elements – 8node93)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 8: Inner Shell of Imbedded Fuel Grain Design: Plot Results Contour Plot Element Solution Stresses von Mises stress
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 9: Inner Shell of Imbedded Fuel Grain Design: Plot Results Deformed Shape Def + undeformed
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 10: Inner Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Rotated view)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 11: Inner Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Front view)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 12: Inner Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Side view)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 13: Outer Shell of Imbedded Fuel Grain Design (Meshed Elements – 8node93)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 14: Outer Shell of Imbedded Fuel Grain Design: Plot Results Contour Plot Element Solution Stresses von Mises stress
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 15: Outer Shell of Imbedded Fuel Grain Design: Plot Results Deformed Shape Def + undeformed
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 16: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Rotated view)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 17: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Front View)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 18: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Side View)
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 19: ELEMENT LAYERS
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 20: LAYER ORIENTATION AND THICKNESS
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 21: LAYER ORIENTATION AND THICKNESS continued…
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 22: COMPOSITE PROPERTIES
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 23: ALUMINUM PROPERTIES
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 24: FAILURE CRITERIA FOR COMPOSITES
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 25: INVERSE TSAI-WU STRENGTH RATIO INDEX
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 26: X-COMP OF STRESS
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 27: Y-COMP OF STRESS
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 28: X-COMP OF STRESS
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 29: SHEAR XY-DIR
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 30: SHEAR YZ-DIR
Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 31: SHEAR XZ-DIR
Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) Model Geometry Geometry is the same for both the top and bottom fixture Mass = 0.520526 kg % Allowable Mass(2.31kg) = 22.5% Volume = 0.00018 m3
Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) 1000 psi 1000 psi Material Properties, Loading, and Meshing Al 7075-T6 Density: 2810 kg/m3 Modulus of Elasticity: 71.7 GPa Shear Modulus: 28 GPa Meshing done with Solidworks and Cosmos finite element analysis Elements: 25306 Nodes: 49277
Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) Factor of Safety Results
External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Model Geometry Mass = 1.63918 kg % Allowable Mass(2.31kg) = 71.0% Volume = 0.00058 m3
External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Material Properties, Loading, and Meshing Al 7075-T6 Density: 2810 kg/m3 Modulus of Elasticity: 71.7 GPa Shear Modulus: 28 GPa 1000 psi Meshing done with Solidworks and Cosmos finite element analysis Elements: 43804 Nodes: 87448
External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Factor of Safety Results