330 likes | 523 Views
Low energy approach for the SU(N) Kondo model. Christophe Mora, Xavier Leyronas, Nicolas Regnault Laboratoire Pierre Aigrain, ENS, Paris. Many thanks to. Aashish A Clerk, P. Vitushinsky Karyn Le Hur. Takis Kontos ENS mesoscopic group. Outline of the talk. Reminder: SU(2) Kondo model
E N D
Low energy approach for the SU(N) Kondo model Christophe Mora, Xavier Leyronas, Nicolas Regnault Laboratoire Pierre Aigrain, ENS, Paris Many thanks to Aashish A Clerk, P. Vitushinsky Karyn Le Hur Takis Kontos ENS mesoscopic group
Outline of the talk Reminder: SU(2) Kondo model Transport and Local Fermi liquid theory SU(4) and SU(N)
U (or EC) VSD VG R L Coulomb blockade Current flows for Low energy sector • Charge excitationquenched: quantum dot acts as an impurity ½-spin.
Kondo hamiltonian • Charge excitationquenched: quantum dot acts as an impurity ½-spin. • Kondoantiferromagnetic coupling • Tunneling to leads: exchange interaction between conduction electrons and spin impurity. Local interaction
Potential scattering • T-matrix Pauli disappears…
Kondo scattering • Kondo antiferromagnetic coupling Fermi surface: IR divergences Kondo (Prog. Theo. Phys., 1964)
Kondo screening • Renormalization flow: J effectively large. • Susceptibility saturation indicates spin screening. • Ground state: many-bodysinglet. • Enhanced scattering and conductance (Kondo resonance). L. Kouwenhoven and L. Glazman (2001)
Kondo in Quantum dots Goldhaber-Gordon et al (Nature, 1998) Nygard, Cobden, Lindelof (Nature, 2000) QD Carbon nanotube L. Kouwenhoven and L. Glazman (2001) Scaling in T/TK
U R L Summary: Kondo effect • Charge quenched, exchange with leads electrons. • Resonant Kondo scattering, formation of many-body singlet. • Conductanceincreases (in dots) at low T.
VSD VG Transport and Local Fermi liquid theory
Local Fermi liquid picture Nozières (1974) • Scattering via virtual polarization of singlet (energy TK). • imposed by Friedel sum rule. • For comparison: resonant level model. But Kondo resonance is a many-body effect.
? R L Floating of Kondo resonance • Where to put the Fermi energy (reference) ? Out of equilibrium situation Phase shiftindependent of Fermi level position
CFT and low energy theory • Conformal field theory provides description for the strong coupling fixed point. free fermions with phase shift π/2 for SU(2) exactly screened case. Affleck, Ludwig (1991) • Leading irrelevant operators guessed from CFT. Determine low energy properties. Recovered with α1 = φ1 • Integrable QFT technics: complete IR hamiltonian expansion extracted from Bethe ansatz. Lesage, Saleur (PRL, 1999)
Quasiparticle phase-shift: odd part even part Elastic Inelastic Local Fermi liquid picture Nozières (1974) • , L/R leads separated: L R • , plane waves for scattering states
eV R L Fractional Shot Noise (T=0, V<<TK) Sela, Oreg, von Oppen, Koch (PRL, 2007) cL • Linear transport: δ(0)=π/2 is sufficient. • perfect transmission and no noise. • Non-linear transport (~V3). • effective charge e* =S/ 2 IBS . e* =e for non-interacting electrons (only elastic scattering). • poissonian statistic for backscattering, events with one/two electrons. cR Gogolin, Komnik (PRL 2006) Golub (PRB 2006) Meir, Golub (PRL 2002)
L Current operator R • Straightforward approach: • does not apply for T≠0 Noise (Nyquist Noise not recovered) • Back to Büttiker but with even/odd channels. Kaminski, Nazarov, Glazman (PRB 2000) all elastic scattering encoded in b
Current noise computation • Landauer-Büttiker recovered with • Interactions on top of that, full perturbative Keldysh calculation is required.
Fano factor • Important temperature corrections Effective charge Mora, Leyronas, Regnault (PRL 2008)
1e SU(4) and SU(N)
1e Orbital Kondo effect • Two degenerate subbands incarbon nanotubes (from K-K’). • Screening by leads requires orbital quantum number conservation during tunneling. Jarillo-Herrero et al (Nature 2005) • Electron exchange couples all states • Much larger Kondo temperature
Orbital +spin: SU(4) Kondo ? Choi, Lopez, Aguado (PRL 2005) • Orbital degeneracy, enhanced Kondo temperature • Experimental observations • Four peaks splitting in magnetic field Jarillo-Herrero et al (Nature 2005) Sasaki, Amaha, Asakawa, Eto, Tarucha (PRL, 2004) Makarovski, Zhukov, Liu, Finkelstein (PRB, 2007) • SU(4) symmetry difficult to prove. • Strong competition with two-level SU(2), SU(4) unstable (asymmetry or non-orb-sel-tun) Lim et al (PRB 2006)
Lim et al (PRB 2006) SU(4) at low energy DOS • Friedel sum rule implies δ(0)=π/4. • TransmissionT0 =1/2 • Partition noise at strong coupling, S0=2 e3 V/h, does not vanish like SU(2). • Non-linear transport, δI, δS ~V3 • Effective Kondo resonance above Fermi level. • model is not p-h symmetric. • FL description: lowest order. Not sufficient for FL corrections !
FL corrections: second generation elastic inelastic • Kondo resonance ‘floating’: • Current approach (CFT): 3rd Casimir
Conductance for SU(N) SU(4) case SU(2) case SU(N) p electrons on the dot
Universal ratio for SU(N) • Ratio obtained by comparison with Bethe-Ansatz solution (energy as a function of magnetic field). Bazhanov, Lukyanov, Tsvelik (PRB 2003) at large N • Comparison with large N approach. Calculation of Lorentz ratio. Both coincide ! Houghton, Read, Won (PRB 1987)
Universal ratio for SU(4) Mora, Leyronas, Regnault (PRL 2008) Vitushinsky, Clerk, Le Hur (PRL 2008)
Noise measurements Noise measurements performed at LPA. 16/19
Noise measurements (II) Conductance Noise T=1.4K TK=3.45K T=1.4K TK=3K
Conclusion • General framework for low energy properties of SU(N) screening. • Effective Fano factor characterizes non-linear transport, effective charges can be extracted. • Important temperature corrections to shot noise. Vitushinsky, Clerk, Le Hur (PRL 2008) Mora, Leyronas, Regnault (PRL 2008)
L. Kouwenhoven and L. Glazman (2001) Felsch (Z. Phys., 1978) Winzer (Z. Phys., 1973) D. Goldhaber-Gordon et al (Nature, 1998) Nygard, Cobden, Lindelof (Nature, 2000) Sasaki, Amaha, Asakawa, Eto, Tarucha (PRL, 2004) Zarchin, Zaffalon, Heiblum, Mahalu, Umansky (PRB, 2008) Makarovski, Zhukov, Liu, Finkelstein (PRB, 2007)
Metallic Alloys Measurements of susceptibility in Rare-earth (La, Ce)B6 Felsch (Z. Phys., 1978) Deviations from Curie-Weiss law Measurements in (La, Ce)Al2 Minimum in resistivity Log behavior Winzer (Z. Phys., 1973)