1 / 27

The Weak Interaction in Low Energy Nuclear Physics

This presentation provides an overview of recent achievements and ongoing research in low energy nuclear physics, including topics such as atomic parity violation, electric dipole moments, Vud quark mixing matrix element, CKM unitarity, exotic weak currents, and more. The talk highlights new vistas and prospects for this field in the LHC era.

menges
Download Presentation

The Weak Interaction in Low Energy Nuclear Physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. b+ ne The Weak Interaction in Low Energy Nuclear Physics ARIS-2014 Tokio, June 1-6, 2014 Nathal Severijns KU Leuven, Belgium

  2. e+ nucleus q ne Overview • recent / ongoing achievements • - APV and EDM • - Vud and unitarity / Ft-values • - exotic weak currents • (scalar, tensor, V+A) • (selected experimentsshowing diversity in techniques used) • - new vistas and prospects for this field in the LHC era • conclusion andoutlook

  3. 1. Atomic Parity Violation & Electric Dipole Moments Atomic Parity Violation probing sin2W at atomic energies (test Standard Model) 206Fr @ TRIUMF, LNL 223Ra @ KVI enhancement factors of ~15 and ~50 compared to 133Cs case (Wiemann et al.) Electric Dipole Moments matter/anti-matter difference in the Universe 225Ra @ ANL and KVI 223Rn @ TRIUMF 129Xe @ Tokyo and TUM sensitivity to EDM enhanced by (by several 100 to few 1000 times): - near degeneracy of atomic levels - octupole deformation of nuclear charge distribution

  4. 2. Vud quark mixing matrix element & CKM unitarity from experiment nucleus dependent corrections nucleus independent |Vud| = 0.97425(22) Hardy & Towner, PR C 79 (2009) 055502 |Vus| = 0.22564(53) Dowdall et al., Phys. Rev. D 88, 074504 (2013) = 3071.81(83) s Towner & Hardy, Rep. Prog Phys. 73 (2010) 046301

  5. prospects - 1 • superallowed Fermi transitions - new data for 0+  0+ pure Fermi transitions - testing isospin corrections C - nucleus-independent radiative correction R • corrected Ft values of T = 1/2 mirror transitions and neutron decay could contribute as well N.S. , I.S. Towner et al., Phys. Rev. C 78(2008) 055501 O. Naviliat-Cuncic & N.S. , PRL 102 (2009) 142302

  6. prospects - 2 2a. Neutron decay • no nuclear structure related corrections • issues of lifetime and asymmetry parameter first have to be resolved 2b. T = 1/2 mirror transitions could contribute as well • additional tests for isospin corrections C • provide additional value for Vud(set of consistent data needed) good cases: e.g. 19Ne: β-corr. measurement performed with LPCTrap 35Ar : β-corr. measurement performed with LPCTrap; β-asym. measurement in preparation (if A/A = 0.5%  Vud = 0.0004) - requires measurements of QEC, t1/2and BR leading to Ft values for mirror transitions N.S. & O. Naviliat-Cuncic, Physica Scripta T152 (2013) 014018

  7. 3. Exotic weak currents (scalar, tensor, V+A) 1.  correlation exp. Fierz term !!! for pure transitions weak interaction results are independent of nuclear matrix elements !!!

  8. scalar - TRINAT MOT trap at TRIUMF-ISAC – 38mK search for scalar couplings superallowed 0+ 0+ pure Fermi transition (t1/2 = 0.95 s) A. Gorelov, J. Behr et al., Phys. Rev. Lett. 94 (2005) 142501 TOF

  9. ongoing experiments in search for scalar weak currents: - LPCTrap-GANIL (Paul): 19Ne, 35Ar PS1-A065 – Delahaye - WITCH-ISOLDE (Penning): 35Ar - Jerusalem (MOT): 19Ne - TamuTrap , Texas (Paul): 32Ar (T=2, βp) scalar: a = -1 35Ar Da/a ~ 0.3% (analysis in progress) WITCH 35Ar preliminary vector: a = +1 preliminary LPCTrap - GANIL poster D. Zakoucky PS1-A061

  10. Limits on scalar currents = 3071.81(83) s 38mK: Gorelov, Behr et al., PRL 94 (2005) 142501 Towner & Hardy, Rep. Prog Phys. 73 (2010) 046301

  11. Tensor - LPCTrap @ GANIL - 6He / 35Ar Li2+ 2006 (6He): aβν = −0.3335(73)stat(75)syst X. Fléchard et al., J. Phys. G 38 (2011) 055101 Li3+ 2010 6He Da/a ~ 0.5 % (stat) (analysis in progress) charge-state distribution and comparison to atomic theory: C. Couratin et al., PRL 108 (2012) 243201

  12. TTensor - 6He MOT Trap setup @ Univ. Washington, SeattleP. Mueller, A. Garcia, et al. 1083 nm 6He Trap/Detector Chamber PS2-B005 – Mueller • RF discharge -> metastable He* • Laser cooling @ 1083 nm • Timeline: • - 6He produced and trapped • - first data run in August 2013 --> 1 % measurement • - 0.1 % measurement by 2015 6He Trapping Rates @ CENPA: @ source: 5x109 s-1 ; capt. efficiency = 2x10-7; @ trap: 1000 s-1 Trap-to-trap transfer: > 60% efficiency, ~15 ms A. Knecht et al., NIM A 660 (2011) 43, Phys .Rev. C 86 (2012) 035506 & arXiv:1208.6433v2 [nucl-ex]

  13. O. Aviv et al., J. Phys.: Conf. Ser. 337, 012020 (2012) N. Severijns, CGS14 conference - Aug. 28 - Sept. 02, 2011

  14. Tensor - -- Correlation in Paul trapped 8Li Ions G. Savard et al. (ANL, Mc. Gill, LLNL, Univ. Chicago, … ) aβν = −0.3307 (60)stat (67)sys G.Li, G.Savard et al., PRL 110 (2013) 082502 data with ~20 times more statistics + lower systematics to be published   1% or better Poster PS2-B004 – Perez Galvan

  15. Tensor - βasymmetry – Leuven / ISOLDE / Prague region analysed F. Wauters et al., NIM A 609 (2009) 156 Aexp (60Co) = - 1.014 (12)stat (16)syst Aexp (114In) = - 0.990 (10)stat (10)syst Aexp (67Cu) = 0.587(8)stat (12)syst F. Wauters et al., Phys. Rev. C 82 (2010) 055502 F. Wauters et al., Phys. Rev. C 80 (2009) 062501(R) F. Wauters et al., Phys. Rev. C 80 (2009) 062501(R) G. Soti et al., submitted to PR C

  16. Constraints on tensor type weak couplings a(6He) C. Johnston et al., PR 132 (1963) 1149 A(60Co) F. Wauters, N.S. et al., PR C 82 (2010) 055502 --(8Li) G.Li, G.Savard et al., PRL 110 (2013) 082502 A(67Cu) G. Soti, N.S. et al., (2013) submitted --(8Li) A(60Co) A(67Cu) a(6He)

  17. New vistas and prospects in the LHC era - 1 • new generation of trap-based experiments •  towards 0.1% precision level • precise -spectrum shape measurements • (Leuven-Krakow, MSU-NSCL, LPC Caen, … ) • bFierz : scalar / tensor weak currents • bWM : weak magnetism (Standard Model term) • - induced by strong interaction because decaying quark is • not free but bound in a nucleon; • - is to be known better when reaching sub-percent precisions • Note the different energy dependence of both effects !!

  18. miniBETA spectrometer (Leuven / Krakow) scintillator (later DSSDD) multi-wire drift chamber poster P. Finlay PS2-CO23

  19. New vistas and prospects in the LHC era - 2 - perform more measurements with polarized nuclei • access to A and other correlations involving nuclear spin • Beta and recoil asymmetries w.r.t. nuclear spin • MOT trap : optical pumping in the trap, in magnetic holding field • TRIUMF: 80Rb, 37K • Jerusalem-Tel Aviv-Rehovot: 19Ne • ULiège-KU Leuven: 35Ar • collinear laser optical pumping • NSCL-BECOLA, ISOLDE-COLLAPS: 21Na, 23Mg, 35Ar, 37K

  20. Precisionmeasurements in nuclear/neutron decay in the LHC era 90 % CL 90 % CL nuclear and neutron decay, pion decay limits on scalar/tensor couplings obtained by CMS collaboration in pp e + MET + X channel - S. Chatrchyan et al. (CMS Collab.) J. High. Energ. Phys. 1208 (2012) 023; - CERN Rep. nr. CMS-PAS-EXO-12-060 (2013) O. Naviliat-Cuncic and M. Gonzalez-Alonso Annalen der Physik (2013) in print. V. Cirigliano, et al., J. High. Energ. Phys. 1302 (2013) 046

  21. Conclusions and Outlook - pure Fermi transition Ft-values, and possibly neutron decay parametersand correlation measurements in mirror  transitions  contribute to further improving precision of Vud mixing matrix element; - - correlation and  asymmetry measurements+ Ft-values  improved limits on scalar and tensor type weak currents; - additional observable: beta-spectrum shape  scalar/tensor currents and weak magnetism - searches for new physics (bosons) at low energies remain competitive with direct searches at LHCwhen concentratingonFierz term andVud - many experiments ongoing or planned / in preparation

  22. Contributed talks and Posters EDM - APV: Par. 1C – Sato PS1-A064 – Ohtomo PS1-A066 – Ohtomo PS1-A067 – Mueller PS2-B001 – Kawamura PS2-B002 – Teruya PS2-B003 – Inoue PS2-C020 – Harada (APV) ββ-decay: Par. 1C – Hinohara PS1-A064 – Ringle PS2-B006 – Yoshinaga Superallowed Fermi: Par. 1C – Laffoley Par. 1C – Park PS1-A062 – Blank PS1-A063 – Nishimura β-decay correlations: PS1-A061 – Zakoucky and β-spectrum shape PS1-A065 – Delahaye PS2-B004 – Perez Galvan PS2-B005 – Mueller PS2-C023 – Finlay (spectrum shape)

  23. Backup slides

  24. Ion/atom traps for - correlation measurements Most precise  correlation measurements Particle traps: ideal sources - sample is isotopically pure - localized in a small volume - atoms decay at rest - detection of recoil ion - negligible source scattering - potential for polarized sample Penning Paul MOT

  25. Overview of - correlation projects a = −0.3307(60)(67) N.S. & O. Naviliat-Cuncic, Physica Scripta T152 (2013) 014018

  26. MOT trap for radioactive Ne isotopes G. Ron et al. (Hebrew Univ., Weizmann Inst. and SOREQ – Israel) 17,18,19,23,24Ne double-trap MOT concept (similar to TRINAT) - p/d accelerator (5mA/up to 40MeV) - neutron generator Zeeman slower G. Ron, priv. comm.

  27. WITCH @ ISOLDE - 35Ar - scalar (KU Leuven, Univ. Munster, ISOLDE, NPI Rez-Prague, LPC-Caen) Goal : determine bn correlation for 35Ar with (a/a)stat  0.5 %  measure energy spectrum of recoiling ions with a retardation spectrometer scalar: a = -1 preliminary vector: a = +1 poster by Paul Finlay M. Beck et al., Eur. Phys. J. A47 (2011) 45 M. Tandecki et al., NIM A629 (2011) 396 S. Van Gorp et al., NIM A638 (2011) 192 1/4/2020

More Related