460 likes | 589 Views
Meson-Production Experiments at COSY-Jülich. Tools (1): COoler SYnchrotron COSY. WASA. (Polarized) p & d beams Electron & stochasting cooling Beam momentum: 0.30 – 3. 70 GeV/c pp pp X ( m X 1.1 GeV/c 2 ) dd 4 He X ( m X 1.0 3 GeV/c 2 ). ANKE. p , d. 10 m.
E N D
Tools (1): COoler SYnchrotron COSY WASA • (Polarized) p & d beams • Electron & stochasting cooling • Beam momentum: 0.30 – 3.70 GeV/c • pp pp X (mX 1.1 GeV/c2) • dd 4He X (mX 1.03 GeV/c2) ANKE p, d 10 m PAX TOF ~ 340 users, 15 countries
COSY Tools (2): Hadronic Interactions • + Large production cross section • + Reactions = “Isospin filters” • e.g.pp→d X (Ix = 1) • dd→4He X (Ix = 0) • – Large background highly selective detectors!
Tools (3): ANKE & WASA WASA ANKE • Forward spectrometer • Excellent K+/K−i.d. • Cluster-jet target (L~ few1031 cm-2s-1)Polarized target • Almost 4p coverage • Charged and neutral particle detection • Frozen-pellet target (L~ 1032 cm-2s-1)
mass: conflicting results new exp. with better knowledge of beam energy MAMI/Crystal Ball preliminary *) GEM/COSY 05 *) http://wwwa1.kph.uni-mainz.de/Bosen/archive/talks/2007/seminars/Nikolaev.pdf
Measurement of the h mass at ANKE: The idea • Measurement of the two-body reaction dp→3Hehusing a ramped COSY deuteron beam • Determine dp→3He+hreaction threshold (Q = 0) from kinematics • Calibrate absolute beam momentum pd with a spin-resonance method
Kinematics 3He momentum [MeV/c] size of kinematic ellipse determines Q value and threshold location beam momentum [MeV/c]
Beam energy determination: the method • Depolarize a vertically polarized deuteron beam through an artificially induced spin resonance • induced by an external rf solenoid field • if frequency of the rf field = spin-flip resonance frequency fr→ beam depolarizes fr EDDA detector as beam polarimeter polarization [arb. units] rf-solenoid frequency [MHz]
Beam energy determination: results Gd– gyromagnetic anomaly fr – spin resonance frequency f0 – beam revolution frequency (from Schottky noise) ∆p/p ≤ 6×10−5 P. Goslawski et al., subm. to PR ST-AB arXiv:0908.3103v1 [physics.acc-ph] Expected accuracy of h mass: ∆mh ≤ 50 keV/c²
h 3p0 • First WASA-at-COSY production run (April 2007) • 4 days data taking, pp→pph, L=1031 cm-2s-1, Tp=1.4 GeV C.Adolph et al., PLB 677, 24 (2009) [arXiv:0811.2763 [nucl-ex] ] 1.2 · 105 events a = –0.027 ± 0.008(stat) ± 0.008(syst) analysis: P.Vlasov p.vlasov@fz-juelich.de
h 3p0: status of experiment vs. theory experiment ↔ PT calculations (up to NNLO) strong discrepancy
Towards rare h decays at WASA • pd→ 3He h • 4 weeks data taking (Sept. 2008) • L= 2.5·1031 cm-2s-1, Q=60 MeV, Tp=1000 MeV • 107h mesons on disk / all decay channels • 8 more weeks in Aug./Sept. 2009 • Channels being analyzed: p+p–g (BR=4.6%) e+e–g (6.8·10-3) p+p–e+e– (4.2·10-4) e+e–p0 (<4·10-5) e+e–e+e– (<6.9·10-5) e+e– (<7.7·10-5) 17 h data taking (3% of total statistics) Trigger on 3He (no further cuts)
h→e+e–e+e– F(q1², q2²) • Determination of the h transition form factor F(q1², q2²) • Study off-shell structure of the hgg vertex • Input for calculation of muon anomalous magnetic moment • Measure shape of M(e+e–) [= q²(g*)] distribution • Branching ratio • Exp.: < 6.9 · 10-5 • Theory: ~ 6 · 10-5 see e.g. J.Bijnens and J.Gasser, Phys. Scripta T99 (2002) 34 [arXiv:hep-ph/0202242] R.R. Akhmetshin et al. [CMD-2 Collaboration] PL B 501, 191 (2001) [arXiv:hep-ex/0012039]
h→e+e–e+e– at WASA analysis: L.Yurev l.yurev@fz-juelich.de COSY beam Central „Mini Drift Chamber“ XY projection currently 15 candidate events (from 4 weeks of pd→ 3He h data)
Rare h decays: beyond Standard Model? • Example: h→ e+e– • WASA’s “golden channel” • SM prediction: BR = (5.8 ±0.2)·10–9 • any larger BR hints at physics beyond SM • current upper limit: BR < 2.7·10–5 • WASA ≥2010pp→ pph • ~20 times larger cross section than pd→ 3Heh • larger background ⇒ more selective on-line trigger goal 1010 h/year D. Gómez Dumm and A. Pich, PRL 80, 4633 (1998) WASA/CELSIUS M. Berlowski et al., PR D 77 (2008) 032004.
pn→ dp0p0 Talk by M.Bashkanov Tuesday 02:20pm • Narrow structure in √s distribution! • Not seen in isospin-related reactions Preliminary pn → d p0p0 pp → d p+p0
p/d-induced KK production: World data set total cross section, nb pp → ppK+K– pp → dK+K0 pn → dK+K– pd → 3HeK+K– dd → 4HeK+K– ●■▲ - COSY ANKE, COSY-11, MOMO ○ - DISTO test fordd → 4He f0(980) ↳ a0(980) excess energy, MeV
x 1011 !! 5 pb dd4He K+K– X.Yuan et al., EPJ A in print DOI 10.1140/epja/i2009-10849-7 arXiv:0905.0979 [nucl-ex] ~5 events cross section for the “isospin filter” dd→4HeX is extremely small better @BES (J/y →ff0→fa0→f(p0h) )
KK production: Interpretation pp (→ pK+L(1405)) → ppK+K– pp→ pK+L(1405) → pK+p0S0 Analysis of the coupled p0S0K–p final states • Resonances below KK [a0/f0(980)] and KN [L(1405)] thresholds C. Wilkin arXiv:0812.0098 Driven through L(1405) production Close-to-threshold regime: limited phase space & strong FSI
Scattering length and effective range for pp: K–p scattering length Our simple FSI parameterization (here pp→ppK+K–) Also used for pp→pph by: U.-G.Meißner et al. EPJ A 4 (1999) 259 K+K– FSI: 2nd order effect K+p interaction: neglected
Simple FSI ansatz: Successful! pp→ppK+K– (Q=51 MeV) pp→dK+K0 (Q=104 MeV) • Describes all data up to 100 MeV excess energy Strong dK0 FSI visible
K+K– K0K0 KK invariant mass distributions • Low-mass enhancement K+K– K0K0 thresholds
Coupled-channel effects in KK production • The model: virtual K0K0 production followed by a K0K0→ K+K– conversion • Enhancement factor: KK production amplitudes (I=0,1) elastic scattering ∝ K0K0⇌ K+K– scattering length • K-matrix formalism with assumptions: • constant matrix elements • s-wave scattering • isospin invariance broken only by K0–K± mass difference A.Dzyuba et al., PLB 668, 315-318 (2008) arXiv:0807.0524 [nucl-ex]
Coupled-channel effects in KK production • Kaon pairs are dominantly produced in isospin zero configuration pp→ppK+K– K0K0threshold A.Dzyuba et al., PLB 668, 315-318 (2008) arXiv:0807.0524 [nucl-ex]
Summary • COSY with ANKE & WASA (and others) • Symmetry & SM tests in hadronic interactions • High precision experiments utilizing spin • Antikaon-Nucleon systems
ANKE – Apparatus for detection of Nucleon and Kaon Ejectiles
TOF – Time Of Flight spectrometer Target Tracking Detectors
Internal targets at COSY Cooled Laval nozzle Operation principle: Focussing and defocussing of hydrogen or deuterium hyperfine states Condensation point Virtual target point Skimmer Pellet Polarized (ABS) Cluster jet
Some words about the h meson • Simple QM characterization: • All important quantum numbers are zero: spin, isospin, el.charge, strangeness, charm, bottom, baryon & lepton number • Parity: P|h> = –1|h>; charge conjugation: C|h> = +1|h> • All first order strong, electro-magn., weak decays are forbidden • Study higher order or weak processes • Test the symmetries that forbid first order decays • Example: h → 3p: • Forbidden by isospin conservation • Test ground for EFTs of QCD • Potentially delivers quark mass ratios see e.g. J.Bijnens and J.Gasser, Phys. Scripta T99 (2002) 34 [arXiv:hep-ph/0202242]
pp→ pph large cross section:s=10 µb at Q=60 MeV ideal for rare decays high background direct multi-pion productions(2p0)/s(h) ~ 20 trigger on specific h decays ideal for:h → 3p0 , e+e–p+p– , e+e–e+e– , e+e– pd→ 3He h lower cross section:s=0.4 µb less multi-pion backgrounds(2p0)/s(h) ~ 1 unbiased trigger (all h decays) clean h tagging via 3He i.d. ideal for:h → p+p–p0 , p0gg Hadronic hproduction: complementary reactions
Quark-mass ratios from h 3p “Leutwyler’s ellipse” H.Leutwyler, hep-ph/9609465
Rare h decays: possible symmetry tests with WASA • Many current upper limits can be improved C. Amsler et al. (Particle Data Group), PLB 667, 1 (2008)
h→p+p–p0 with WASA • another test of PT / up-down quark-mass difference • ~5·105 events expected, incl. 2009 (KLOE: 1.3·106) • analysis in progress G(3p0)/G(p+p–p0), Dalitz plot etc. • Other channels being analyzed: p+p–g (BR=4.6%), e+e–g (6.8·10-3), p+p–e+e– (4.2·10-4), e+e–p0(<4·10-5), e+e–e+e– (<6.9·10-5), e+e– (<7.7·10-5) analysis: P.Adlarson patrik.adlarson@fysast.uu.se
Sensitivity of WASA *) conservative estimate; factor 2-3 more expected
p0 h ga0KK gf0KK gf0KK ga0KK a0 f0 a00(980) – f0(980) mixing: Kaon loops Enhanced mixing by “Kaon loops“ K0 K+ a0 a0 f0 f0 L = K0 _ K– a mK+ + mK- 2mK0 8 MeV d d CSB amplitude “normal“ IV o(1%) (Product of mixing amplitude L and f0 productionoperator)2 N.N.Achasov et al., PL B 88, 367 (1979)
pd→ 3Heh close to threshold • Total cross section reaches maximum within Q = 0.5 MeV! PRL 98, 242301 (2007)) PLB 649, 258 (2007))
Sensitive observables • KN FSI expected to be small • K and K have the same mass → kinematic effects negligible