600 likes | 723 Views
A more supervised version of DNA shuffling Multivalent avimer proteins evolved by “ exon” shuffling of a family of human receptor domains Nature Biotechnology 23: 1556 (2005) Joshua Silverman, et al & Willem Pim C Stemmer Avidia, Inc.
E N D
A more supervised version of DNA shuffling Multivalent avimer proteins evolved by “exon” shuffling of a family of human receptor domains Nature Biotechnology 23: 1556 (2005) Joshua Silverman, et al & Willem Pim C Stemmer Avidia, Inc A misnomer; really domain shuffling) Strategy: Create therapeutic proteins by combining hundreds of known binding domains from receptor proteins in new random combinations and selecting for binding to a specific target by phage display
Organization of binding domains in typical mammalian receptors A-domains:(~35-40 AA’s/domain): determine binding speficicity of many receptors Typical receptor structures Library of 217 A-domains (~metaphorically?) as a spacer between domains Dual specificity domain Bipartite domain 2 domains cooperating Degenerate oligos synthesized to coding for 35-40 AAs of the A domains Only AA’s naturally found at each position were coded for. Conserved structural AAs were kept constant (blue, yellow). Complexity = 1023 .Actually realized = 1010 as phage display particles Select one domain at a time, serially, by panning: LRP = LDL receptor related protein
Isolation of a high affinity binding protein to IL6 ( interleukin 6 ) by iterative selection (IL6 is a target for cancer and inflammation) Phage display (M13) - IL6 immobilized on plates. Recovered proteins from first cycle, cloned and tested for IL6 binding; 20 top binders pursued. Add the domain library to each of the 20 first round winning domains. Again pick best 20 overall. After a third cycle pick the very best binder: = “C326” IL6 = interleukin 6 One domain Three domains Two domains M13 phage Monomer displayed on phage coat Monomer protein Screened for binding Build 20 dimer pools from 20 best monomers combined with the same library again etc. to trimer
Finally, add an IgG-binding domain (like protein A) at the end to prevent rapid clearance (measured half-life of 89 hours in monkeys)
Binding measured by a competition assay (“AlphaScreen”) General scheme Reactive oxygen species can react only over a short distance with and “acceptor” bead Laser Luminescence Reactive Oxygen IL6 receptor IL6 Avidin bead: biotinylated IL6 : gp130-Fc : Protein A bead Competition: IL6 (non-biotinylated) or C326 avimer
Physical assay: Biacore surface plasmon resonance to measure binding kinetics
Biological assay: Stimulation of proliferation of TF-1 cells (erythroleukemia line) 16 h of 3H-TdR incorporation to measure promotion of DNA synthesis Commercial anti-IL6 antibodies
Acute phase inflammatory response induced by IL6 is reversed by avimer C326 (in mice) Specific for IL6-induced inflammation
RNA Topics: • 1.) Pre-mRNA splicing basics • Splicing-based therapy • RNAi
Intron = 80 nts to 100,000 nts Pre-mRNA Branch point Phosphotriester Lariat mRNA
ATP ATP The spliceosome(5 smalll RNAs + 100-300 proteins) ATP Intron becomes a lariat ATP degraded http://www.swbic.org/education/comp-bio/intron.htm
(= “acceptor” site) (= “donor” site)
Finding exons in a sea of introns TTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAAGGCAAGGTCAGATTTTTATTATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGAAAAACCTTACCTGGTATTGAATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTATAATATCAAAATATTTGTGTTATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTCTCTCCTTTCAGCCTTCTGTACACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAAGTACATATATACATTTATATTTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATTAGTGTGTCTAGAGCTATCTAATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAACTGATTTAACCAGTCCACTATTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTCTTTTACATGTTTGGTACTTGTTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTATTGAATATTTTGGTATTGCCAAATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATGAGAGTACCTTTCTCTTCACAATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAGGCTGGGGTGCAGTGCAGCAGAATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCCTTCCACCTCAGCCTCCTGAGTAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTATTTTGTAGAAACAGGGTTCGCCATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGGCCCAGTTTCTACAGTCTCTCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGCCAGTCTGATAGGTGAAAATGGTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGCTTGGTTTTTTTGAAGGTATCAAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGAAGATTTAAAAAAAATTTTTAATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTGCAGTGGCACAATCACAGTTCACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTCTCAAGTAGCTGGGACTACAGGTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGGGTCTCACTATATTGCCCAGGTTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAATGTATGAAACTTTCTATTAAATTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGATGAAGGAGATGGGAGGCCATCACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTGCTGGATTACATCAAAGCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTTATCAGACTGAAGAGCTATTGTGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTTTCTTATATTTTCTTTGAATCTCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTTTCTAACATATTCACTAGTACTTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGGATATATACTTATTTTACAGGTGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGACTTGGGATACTTTTTTCACTATACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGGGAGTCAAAAGTCCTTTGGAGCTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCACATGGAGAGCTAGAGTATTGGCGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGACTGCAGGTATACTCAAGAGAGTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCACACAATTGAAATGCATCACAACATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAATTTCATTCATAATTTGATCGTGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTATGTTGGGTTGGTATTTCCTGTGAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAGATTAGAACAAATGTCCAGTTTTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCTTATGTTCACATTTTTATTGAGAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCATTAATCATCTATTTTAGTGACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTGGGCAGCCATTTAAGTATTATTATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCATAACACTACTTCCTACCCATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTAAACACAAAATTTAGACTTTTACTCAACAAAAGTGATTGATTGATTGATTGATTGATTGATGGTTTACAGTAGGACTTCATTCTAGTCATTATAGCTGCTGGCAGTATAACTGGCCAGCCTTTAATACATTGCTGCTTAGAGTCAAAGCATGTACTTTAGAGTTGGTATGATTTATCTTTTTGGTCTTCTATAGCCTCCTTCCCCATCCCCATCAGTCTTAATCAGTCTTGTTACGTTATGACTAATCTTTGGGGATTGTGCAGAATGTTATTTTAGATAAGCAAAAACGAGCAAAATAGGGGAGTTTAACTTTAATATTTTCTTTTAAAAAGCATTTCATGTTATAAGATCAATTCTGAGTGGTAGAAAATGCTTTGACATTTTATTTCCATTTTCTACTTTTAGTTTTTTTCCTATTTGTTTAAGATCTTAGAGGATTATTAAGCTGAACTCCTCAACTGATAAAAAGCATGACATCTTAAACATAAGCAAAGCATATTTTTAGGTTAATTTTCACATAGAAAACAGTTTATTTTATGTGAAATTCTATGTAGATATACTATTTTTTTGGTATTTATTGATATGTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTATTTATTTTTTTTTTTGAGACAGAGTCTCACTCTGTTGCCCAGGCTGGAGTGCAGTGGCATGATCGTAGCTCACTGCAACCTCCACTCCCGGGTTCAAGCAATTCTTCTGTCTCAGCCTCCCGAGTAGCTGGGACTACAGGTGCCTGCCACTATGCCCGGCTAATTTTTGTGTTTTTAGTAGAGATGGGGTTTCACCTTGTTGGTCAGGCTGGTCTCGAACCCCTGACCTCAGGTGATCCACCCACCTCAGCCTCCCAAAGTGCTGGGATTATAGGCATGAGCCACGTGCCCGGCCGACATGTTAATTTTTTAAAAAAGGCTTTACTGGGGTATATTTTATATAATATAATAATCACATGTTTTAACTATACAATTCCAAGCTTTTTAGTATATTTATAGGGCTATGCAAGGAAGATATACTGTTAAACAGTAGAAATTGAGAAAGCTCTTCTGATAATATCTCTTGATTTGATGATGGCTCATGCCTGTAATCTCAGTGCTTTGGAAGGCCAAGACAGCAGAATCACTTGAGGCCAGGGGTTCGAGACCAGCCTGGGCAACACAGCAATACCCTATCTTTACAAATAATAAAAATATCTGTTGATTTGAAGTAAAGTTTTTTTTTAAAGACAAGGTCTCATTCTGTCACCCAGGCTGGAATGCAGTAGCAAGATCACAGCTCACTGTGGCCTTGACCTTCTGGGCTCAAGTGATTCTCCCACTTCGGCCTCCCGAGTAGCTGGGACTAACAGGTGTGCACCACCATGGCTGGCTAATTTTTTTTTATGTTTGTAGAGATTGGGTCTTACTGTGTTGCCCAGGCTGATCCCGAACTCCTGGGCTCAAGCAGTCTTCCTGCCTCAGCCTCTAAAATTGCTGGGATTACAGGCTTGAGTCACCATGCCCAGCCTGAAGTAGCATTTCTACCCTGTTTAATAATTCAGCAGCTTGTCATGTAAGATATTCATATATGCATATAAACATTAGGCAGCTTAATTTGGTAAAACTGTAAAATGGAAATTTTAAATTGTTTGCAGCATCAATAACATTGATGTCAGTATGATTTTTACATGCTGATCTTGACCAATTTGAAACAGTGAGTTAAAATCTGGCTGATCCGTACTAATCCTAAAGAAATATTCTATGAACTATTAAATGTTTCCAGAATATATAAAGAAACATTATGATGTCAACACACCCATCTATTTTTTTTTGGAAATAAAAACTCCATTTTTCTTATTAAAGAAAACATGCTTATTAGAAAACATACGGCTGGGTGCAGTGGCACACATGTAATTCCAGTGCTTTGGGAGATCGAGGTGGGAGAATCACTTGAGGCCAGGAGTTTGAGACCAGCCTAGACAACATAATGAGACCCCCTCTCTACACAAAAAGAATTAGTTGTGCATGGTGGCGTGCACCTGTAGTCCCAGCTACTTGGGAGGCAGAGGCAGGAGCATCCCTTGAGCCTAGGAGTTTGAGACTGCAGGAGTTCGAGACTGAGTGGAATGCAGTGGAACTGCATTCCAGCCTGAGTGACAGAGGGAGACCCTGTCTTAAAAAAATAAGAAAGAAAACACAACTGCAGAAAATTATAAAGGATTTAAGTCATTCCAAATATCACTGCCACTTTTTATTTAGAATATTCTAAAGAATTCTCTCTCTGTGTACACACACACATATGCGTACTCTTAATCCAAGTAGCTTGGTAGGATTTTATTTACCTAGTGCCTAGATGGGAAATTGCCTGGGGATTCCAAATACCTATTTCATTAAATTAAAGATGTCACTGATTTTAAGACTTAACACTATTTTTCATACTGCCAAGAAAGAAAACACTACCAGTTATAAATGTAAATTGCCATCAATTGTAATACATCAATTTTAGAGCTATTATTAATAAAATGTGAATGTGCATCTTAGAGCAATGAAATATAGTACTATATATTTGATGACCTTTTCTGCCCTGTGATATTCAGAAAGTGAAAGTTAAATATGGGCTGAGCATGGTGGCTCACACCTGTAATCCCAGTACTTTGGGAAGTCAAGACGGGAGGCTGGCTTGAACCCAGGAGTTCAAGACCAGCCTAGGCAATGTAGCGAGACGCCATCTCAAAATATTAAAAATAAGTAAATAAGTAAATAAAAAGAAGGTTAAGTATACAAATGTATTTCCTTTGTTGTGAATTTATTTCAATTTTATAGTGATTTTTTTTTTTTGAGACGAAGTCTCACTCTTGTCCCCCAGGCTGGAGTGCGATGGCGTGATCTCAGCTCACTGCAACCTCTGCCTCCCAGGTTCAAGCTATACTCCTGCCTTGGCCCCCCGAGTAGCTGGGATTACAGGCGCCTGCTACCATGCCTGGCTAATTTTTGTATTTTTAGTTGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTAGAACTCTTGACCTCTGGTGATCCACCCGCCTCGGACTCCCAAAATGCTGGGATTACAGGCGTGAGCCACCGTGCCTGGCCAGTGGTTTTTTGTTGTTGTTGTTGTTGTTTTGTTTTGTTTTTGTTTTTGTTTTTGTTTTGAGACAGGATCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGTGCCATCTTGGTTCACTGCAACCTCTGCGTGGGCTCAAGCAATCCTCCCACCTCCCTTTCCAGAGTAGCGGGGACCACAGGTGTGTGCCACCACACCTGACTAATTTTTGCATTTTTTTTTGTAGAAACAGGGTTTTGCCATGTTGCCCAGGTTGGTCTGAAACTCCTGAGCTCAAACAATCCAACTGCCTTGGCTTCCCTAAGTGAAATTACAGGCATGGGCCACTGTACCCAGTCTAGTGATTTTTTTATTTTTATTTTTATTTTATTTTATTTTATTTTTTTACCAAAAAAACAACAAAGCCTCAGGAGGAAAAGTTGATACACAAGTAAATTTTATTGGAAATGTTTTTGTGTGGACCTTAAGCAGAGGGAAAATTAGTCTGCATTATGGTGTATCCAGACTAAATGACTGATATTAAAATGAAATTATTCTTAGGATTTGCAATCTTAGAGAAAACTTTTTCATTTTTATTTTTTTGAGTTACAAATTATCTTCATTTACATTTGAGAACAGTGAGTCACAGAGGGATTAAGTAACTTACTCAAGATCATACAAGTCTTTGATTTGAACCCAATCTTTTAACTCTGCAGAACTCAGAGTCACTCTTATTTGGAAAAACTTTTTAACTGATGTGGATCCTCTAATATGGGCTTCCTATTATTCATTCTCTATTAGTCAGAAGTTTTGCAAGCAGACAGAATTCATTTTGCCAATTACGGGATTTTCCCTCAGTTGCAGTCAAGGTTCATAAAACTATAACTCTTTATCTTTAATTAGAAATGTTTTTTTTTTTGAGACAAGGTCTTGCTCTGTTGCCCAGACTGGAATGCAGTGGCATAGTGGCCCATTGCAGCTTTGAACTCCTGGGCTCAAGGGATCCTCTGCCTCAGCCTCCCAAGTATCTGAGACTACAAGTGCGTGCCATCACCCATGGCTATTTTAAAAAAAAAAAAAATTGTAGAGATAGGGTCTTGCTGTGTTGCCCAGGCTGGTCTCAAACTCCTGGTCTCAAGCAATCCTTCTGCCTTGGTCTCCCAAAGTGCTGAGATTACAGGTGTCAGCCGTTGCACCTGGCCAAAACGATAACTTAAAATACACACACACACACACACACACAAACACATATGTGTATTTGTGTGTGTGTGTGTGTGTGTGTGTCTCAAAAGGTATCAAAAGAGAATAGCTATAACTTTAGTGTTGATCTTGATAGTGACTTGATTAGGCTCTGTTTAACATCAAAGATGCAAATTAATACTTTCTTTGAACATATTAAAAATGCAGAAAATATTGGAGTATTTTATTTTAAATAAATTGTATTCTGTATATTTAAGGTATACAACATGATGTTATGGGATACATATAGGTGGTTAAAAGATTACTGCAGTGAAGCAAATTAACGTATCCCTCAACTCACATAGTTACCCATTTTTTTTTTGTTTTGGTGGCAAGAGGAGCTTAAAATCTCATTTAGTGTGAATCCCAAATACAGCACAATTTTATTACCTATATACTTCATGTTGTACATTATATTTCTAGACTTGTTCATCCTACATATCTGCTACTTTGTATCCTCTGAGCTACATCTCCCCATTTTCTCACTTGCCCCCCAAGTAGTTTCTTAAAGTGTCTCATGTAAGAGGGCAGTAGCTTTCAGCTTAAACTTTTTCTCTGTATGTAGTCGATTTCTTTGAGGTATACTTTTCTCTCCAGAATAGTTAGATGTAGGTATACCACTTTGATGTTGACACTAGTTTACCTAGAACTTATCTTCTGTAAATCTGTCTCTATTTCCATCTCTGTCTCCATCTTTGTCTCTATCTCTATCTGTCTATCTCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTAAAGCAAATTCATGCCCTTCTCCTATTTATTGAATCGAGACCATAGACAGGGGTGAGAGAAAGAATTTGGCAGGAATGGGGATGTGTATTATCTGTGGCATAAGGAAACTTTACAGAACTAGGTTCAAAAGTATACTTTCTAGTTCTTTCCCATGGCTTTTCACTTTGATGTAGTCCTTATCAGGTAACTGAGGTTTTATATAAGTCCCCTGATTCTTAGAACATGAAGGTGTAGTAGTCAAGGTTGGTCCCTTGAAACCACAAATTTTGTGAAAAAAAATTAAGAAAATTTGAATAATTTCCTCAGCAAATACATATTGATCATCTGTTATACAGCCATGAGAAGTGGTTCTGTTGCACACGTTTATTTTATCAGATCCTAATCCCAAACCAGGCATAAAATGGAAACCATGAAGATAGGATGAAATAACTTCTGAATGTTTGAATGTTTGAAAATAGTGTACTTAAAAATACCAGGTGGTTTTTGTTTGTTTTTTGTTTTTTTCTTTTTTTGAGACAGGGTCTCACTCTGTCACCCAGGCTGGAGTGTAGTGGTGCAATCTCATCTCATTGCAGTCTTGACCTCCCAGGCTCAGGTTATCTCCCACCTCAGCCTCCCAAGTAGCTGGGACTACAGGCACATGCCACCACGCCCAGCTAATTTTTTGTATTTTTTGTAGAGACGGGGTTTCACCCTGTTGCCCAGGCTGGTCTAGAACTCCTGGGCTTAAGCGATCCTCCCACCTCAGCCTCCCAAAGTGCTAGGATTACAGGCATGAGCCACCATGCCTGGCAGAAAATACCAGGTTTTTAAGTATCAGCACTTACTCTTCAATCTTTTCTATTACTATGTTGTGCTAAATGGTATTTTTTATTTAATTAGAGCAATGCTGTTCAATAGAACTTTCTTTGAGGATGGAAATCTTTTATGTTTCTGCTATGTGGTACAGAGCCACTAGTGACATGTGGCTTTTGAGCGCTTGACACATCTTGTGCAACACAGGAACTGAATTTTTAAGTAATTTATATTGCCACATGTGGCTACCGTATGGGACAGTGTAGTACTAGATGATCTGTAAGGGCTGTGCTTCATCAGTGTCGTTTTTTAACTGACAAAAACCTTTAGTTTTTTTTTTAGTAATGTGTTTATTTAAAAGAATTCATAAAATACAAGTAAACAAATTAACTTGTTACCTGAGCATATGTCCTTTCATACTTATTTTTTCTGCATACATATTTTGGAAAATGGAATATCTGCCCCTTTTTTTTTATCTGAGATACAGTCTACCTCTAAAAATACATGATTCTAACATTCTCACTTTTTGTTGGCATTTGATCAGGGTATAGAAAAACAGTTAAAAGGACAGAGAATGGTTGAGAGATTATGATATGAAGAGAAAATGTGATTGAGTGTGGTAGACTTGGGGCCTGCTTGAATGTTGAGAGAATGACTGTTTTCCGATAAAAAAAAAAAGTCCATTCTAGGATCCTAAAAGAAGGGTCTGAAGTTCACTGCAGAAAGCAAGCTACATAGTACTAAGCCACTAAGGGGACATGGAGCCCTTAGTAATTCCTACCTTAGTAATAGTCTCATCATGCCCTCTTGGGAACCCAGCCTTGTTGATTAGCCTCTCTGCTTTCTCTCCTTATAGTTCAACCTCCCTGTTTGTTCCAAGCAGTTCTTTTCCTGCCCATTTATTATGCATTTCTATACAGCTTTCCTCCTCTTTTTCTATACCATGCTGCAGTTCTTATTGCTACCTAGAGGTTTTCAAAATTCCTAGGGGCGGATAAGTAGGCATAAACAAAGTTCTTCCCTATTATCCTTCCTATTTTTTCACCTAGACTGAAGAGGTAGACAAAATAGAAATAAAGACATTAAGGGTATGTGTTTGTAGTCCCAAAGAGCTTCTCTGGCAATTTTGATGTAGTTGACAGTGACGCTCTGAGTTCAGGACAGATTGGACTCCTTGGCTGAGAGGAGTGAGGAGATAGGACGGTAGAGGAGAGGGTAGAGCAACTCTGGAGGAAGCTTTCCCCTCACCTTTGCCAGTCCTGTTATCCTAGACTTAACCATAATTAAAGATGAGGGAGGCACTCAGTAAAGGGATCTAGTGGGAAGCTTGTTCCAGACAGCCAAGGAGGGAGGTTCGCGCAGTTCCTTTGGCCACCCAGGTGGGGTAATTGATCCATGTATGCCATTCATGTACAATGTAGGCACTTATACCTGTATTCCAATGTAGTGAACTATACCATTACTCTTAAATTAATATTCTTTATTAGCTTCCATGGTGGCTATAGGCCAGGCAAGAGAGTTAAGAAAAAATAAATAGCCAGGTATGGTGACTCAAGCCTGTAATCTCGGCACTTTAGGAGGCCGAGGCAGGAGGATAGCTTGAGTCCAGGAGTTCAAGACCAGCCTGAGCAAAATAGTGAGATCCTGTCTCTATTTTTTAAAAAAGCCTTGGGGCAAACAGGAGTATGGAGGTTTGGATGCTAATAGAACAGCAGTGTCTTACTGCTTGGAGTTCTCTTGTTTCTTGTCCTATCACCGTAGCCTTTGGATCACAGCAATTTTTCCATGACTCCATACTTTTCAGTTCTTGAATATTTTTTCCTTTATTCCTCTTGTCTCTGTAAAGACATCAACTGGAGTTGGACTGTAATACCAGGTATCTCCAGAAGATGGCACTATTTAACAGATTTTATAAATAATTTGATGTGAGTCACTGTCATCTGAAGCTTGTTGCCTTTTCTTTCTTTCTTCTTTCTTTTTTTTCCCCATCAATTCTGTATGTTTGAAATGCTGGGATTTAAGTTAGTTAGAATAAGGGATGTCTGTAATTTCCCTAAATTGAGAAGTAATATGCAAAGGTTGATATCAGAAGTCATATGCTCACCTTGCAACACCAAATAATACTGGCCCATTTGTGATTTTTGAAAGTAACACTCCATAATAAATGGATGTATATATAGAAGCATAACAAAAATAGAAGCACATAAAAGTGAAAAGTCTCATAAACGCCATTGTCACTACTCATGTAATTGCTGTTACAAATTTGTTTAAATGTTGAATAAAAATGGTGTCATAGGCAACACAGTGTTCCACTACTTGGTGTTTTTAATAGCATTATTCTGTCTCAGTGTGCTTTGGATTATCAGGTGCTTTTTAATAGTTGCATGGTATTACATTGTGTAGATGAACTTGATTAATTTAAATGGTTCCCTGTTAATGGACATGTTGGTTTGTTTTTGTGAACAACTGATACAGTGAACATTTATTTTTTAAATAAAAAAAAGAGAGACAGGGTCTTGCTGTGTTTCTCGGGCTGGCCTTGAACTCCTGGGGTCAAGCGATCGTCTTGCCTCTGCCTCCCTGGGATTACAGGCATGAAGCCACCGCACCCGGCCCAGTGAACACTCTTGAATGTATCTTTGTATACTTGTCAAGTGTTTTTGTAGCAATTGATTCCCAGAAGTGGGAATTACATGGAATTAAGTGACATGCATGTTTGCAATTTTAACAGGTATTGCTATGTCATTTTCAAAAGAAGCTATGCCAATTAATACTCTCACCAACAAGAGTGCTTATTTCCCCTCAGCATATTATCAGGCTTAAGTTTTGCCAGTATGGGTGGGAGAACAGTAGAATCACATTGTTTTAGTGTTTGTTTCTCAGATAGATATAATTTTACACCTTATAACCTTCTCTTCTATAAATTGTCTATTTGTGTTCATTCTCCATTTTCCTATGGGTTCTTATTGTTGGAGCCCAATATATAAAAGGGGGTATTTGTTACAGAACCTCTTCAGTTTTGGTTCATGTCATGCCTGGGTTTTTACCCTTTCTACGGATGTTAAAAAAAATTCTCTATTTTCTTCCAGTCCACTTATGGCTTTATTTTTTACATTTAGATTTTAATCCGTCTGGAATTTATTTTTGTGTATGCTGTGAGGTAGGGACCATACTTTTATTTTTTCCCAAATGGGTTACTAGTTGGCCAAACATCATTTATTGAATAATTCATCTTTTCCCTACTGACTCGAAATACCATCTTTATTGTATACTAAATCCTCATATAGTTCTGGGTCTGTTTCTGGGCTCTACTTTGTTCATTTACTGTGCTGGTACTGCACCGTTGTAATTGCTGTGGCTTTGTGGTATGGTATGGCTTGCTCTCTGCTAGGGCAAGTCGAAGCTCTTTTGTTCACCTGCTCTTTCACCCAAATTTTCTGTCCTGAATCCAGCACAGCCAAATTATGGTCATTGTCACCACCAACTACAGTGGGTGTTGAGCATTTCCCATTGAATCTCCTGTAAGGGTTTTATTGGATTCTGTGATAGCAGTAAAATGGGAGCCTAAGAGGTATTCCTTAAAGGACTACTAATCAGACCTGGTTTCCCAGATGATGCTGAAGATGACGGGGCCTGGGCTAGACTTTTGAGGGACATATCCTTGGGGTTGGGTGTGATATAGACCAGCCCTTACAATTTGCTTGACTCATGGGAATCGTACAGGGCCAGAACCAGACACCTGTCATGCTAATAACTTCCCTCACAATTCAGAAATCACTGTGATTGAAGATGGGTGGCTGTTATAATACTACCCACTTAAAAATGGATGTAACCCATTTTTTAGGACTCTTAAAAACATCAAATCAGTAATGGCCGATTAGGACTTTTTAATTTTTACTAATCTCTACTTGAAAGTTTTCTAGTCATTCATTTCAGGAAACCTAATTCTTATAATTCATATCATTTAGAATATCATAATGCTATGGATATTAGCTAGCTAACTTCTCAAATCTTCTAGTTCTCATTTAATTTGAAGTTTGTGTGTGTACATAAGGATATACATATACATATGTGTGTGTAGATATATATATATATAGTTTTTTTTTTTTTAACTAGAATGACCAGTCAACAGGGGACATAAAAGTAATTGGTGGAGATGATCTCTCAACTTTAACTGGAAAGGTATGTATCTTGAAAGGGAAGAAAAAAAAGCACTTCATACCGAGTCAATTAGTAACAGTGTGCTTTCAATCAATCACTAAGAGATAATTTACATAGTATAACTAAATGGGTTATTTAACCCTTGGAAGCAGTCTAGGTTAATTATCGTTCCCTAGGTCATGTAGTAAAAAGACAGTAGAATCCAACATTAACCTTAAATGTCCATATTGTCAAGTACTGCTGTCTGCCTCTGTGGGACTCTAATTTGGGATCCTTCAAAAAACATTGATGGGGGAAAAGATAGCCTTTAAAAAAAAAAAAAAAACAAACCTATGTGAGTCTATGTGAGGTAGACTCACATAGTTTCCTAAAAGATAGCAAAGCAGTATTATGTAGTGGCTGAAAGTGTGAGTTCCGGAGCCTGACAACTGATTCAAAGCATGGCTTAGTACTTCCTAACTCTGACCTTGGGCAAGTTACTTAACCTCTCTGTGTCCCATATGTGATTAGGGTGAGGTTGATAATAGCAGCCATAGAGTTAAGAGGATTAAGTGCTATAATGCAAGTAGAGCTCTTACAACAGTTTCTGGTAAATCACTCAATAAATTCAGACATACTATTATTTTAAGAAATCTCAAAGAGTTTTCTTGTACCTTAAAATTCTCCTAGTGTGAACCATTGGTTTTGGTATATTGTGCTTCCATGTAGTTTAATATCAAGATGTTTTTAGATTTCCCTTTTAATTTATTTGTTGACCCATTGGTTGTTCAGGAGCATGCTGTTTACCTGAAAATAATGGAGATATTAAGGTATTTGAATATTTATCTTCTAGTACATTGAAAAACTTTTTGAGAGTAACCAATAATAAATGATGGAATGCTACTGCTTTTTTTTTTTGAAGCTGCCAGTTATTGTTTACTTACACTATGCCAAATATAAAGGCATTAATCTCATAAAAGTTTCACAACAATCCTGTGAGGGAGACGATATCCCCATTTTACAAATCAGGAAATTAAGACTTAATAAGGTTAAAAGACTTGCCCCAAAGTCACAGAACCAGTAAGTGGTAGAGCTTGAATTTGAATACAGACCTGACTCTAAAGCTCTTTTCTTTCTTTAGATTTTAGTGTTCATTGCTTACTTGAATGAGTATCTATAAGAAAACTTTAACATGTAAAACTTCTGTGAAATTATCTTGTCCCATATCAGGGTCATGTCAAACTAATGTCCTCCTCAGCATCTTTGGAAAACTTCAGAGGAGAAATGAGCTTTGCCCCTCCTGTTCATTTCCTATTCCACTAGGAGACCTGTCCTTCCCTTTCAGCATGCTTTGTCCATATTTAGAAGCTGTTGAAGCCATTACTTGTCTGGTCAGTTTTTAGTGCTGGAATGGACCTAGCCTTTTAGGCCTTCTGAGATTTAGTTTGATCTCGTCTTTCCCACCTAATGGCTCTGTTCTACTACATAGATTTGATCTGAAACAGTTCTCTGTTTCTAAAATAACTTTCTTTTCATGATAGTCACAGTAAAGTACATTTATTATGGAAAAATCAATAAGTATAACGAGTGAAAGTTATTTCTTGGTGGTAAGATTATGGGATTATTTGAACTTTCTGTTTCATTGTATTTTATTTATTTATTTATTTTTGTGATGGAGTCTCACTCTGCTGCCCAGGCTGGAGTGCAGTAGTACGATCTTGGCTCACTGCAACCTCCCCTTCCCAGTTCAAGTGATTCTCCTGCCTCAGACTCCCAAGTAGCTGGGATTACAGGCGCACGCCACCATGCCTGGCTAATTTTTTTATCTTTAGTAGAGACAGGGTTTCACCATGTTGACCAGGCTGATCTCCAACTCCTGATCTCAGGTATCCACCTGCCTCAGCCTCCCAAAGTACCGGGATTACGGGTGTGAGCCACCCTGCCTGGCCTCATTTTGTCTTTTGGGGGTATTTTTGTGTGCAGATATATATGTATATAAATATTTTTCCCTCTTTTCCCCAGTTAGTATTTGAGCAGATGAACTTTGGACCCGAATACCTGTATTCAAGTCTCTAATACCACTTCTTGGCTATTTTCATTTTATCAAATGGCCTCTTATCCTCGTTTTTCTCATTTATTAAGTAGAGATGTAACTACTTGATATAATTCAAAAACTCAATAATGGCATTCTTTTGTTTTTTAGACTCTAGTGTCTGTACTCCTTGTACCATGCTGGGATTCATTTGAACAATTGCATGGCTTTTTTAGTGTATTATTAAATTTGCAGTTTACTTAGAATTTACTGGGACCTCATACAAATGGGAAAAAAACATAACTGTGTTACTCATTTGCTGTGTGCCTTTGGATTGACCCTATTTTTTGTATTCATTTTCTCCCCATGTCCTGAGTTCCACTTTGAATAAAAAAGTAATTTTTTTCCTGCCTGTAAAATAGGCTACCAATAGGCTGCAGTTGTCTATAGTAGCTGCTTCACTGAGGAGAGCTCAGCATGAGAGAAATAGTATGAATTGCTTGCCACAAGTTATGGGCTAGCCTTACTTCATTCTGTACTTGGACCTGTTTAGGCTTCTAAGAGATCTTACCTCCAACAATAAACTGCTTTGAGACATGAAAAGGTGGAAGCTTTACTTGGTTATAACTTTACTTTTAATACCTAGAACAGTGAGTCTTCAAACTTGTATTTGCATGCCCAATTTATAAAAAGTTTCCTGAGCATTTACCCCTAATATATGCATTTTAAATTATATATGATTTATGGTAATAATAATATATATGTTACAAAATACATACAAAAATATAGATTAAACAAGGTGAGGTTAAAAAATTTAAAAGTTCTAATCTTTCTTGCAAACCAGTGGATCTTTTGTGCCTTACTCTGGTAAACACTGTCTTAGAAGAATATATAGAACATTAAAATCTTAATGCTATAGTTATATGACAGAGTATGATGAGAGCTACAGATAAACAACACATCATGAATCTTCTTGTGGCAGTGTTTATAACCATTATGTGAAATGCTGCCTCATTCTTATAACTAGCATAAGAACAGATAGGACTTTCTCGATTTTGAGGGGTAATTATTAGATGGTATTTTCTGTTAAGGACTCTTCCAGCTATAAAATTCTTAAATGTAGAAAGCGAAGTGAGGGTTTATGGTGAGAGGAAGCATTGGTATCATGTTTTAGTGTAGTCCAAGAATATGGACACATCCAGAAAATGCAGATCAAGTTTAGCCTAATGAGAAAATATATTTTGGAGTCCATATGGTAAATTAAATTATGTGATTTTTGAGTTATTGTACAAATATAATTCTTAGAATGTTAGAGTCAGGAGACTATAAGAGACCAACTGCTTCAAGTTTCATTTAACACATGGGAAACTAAGGCGAGAGAAATTTCAAGACTTGCCCAAGATTAGACCTCTTGTTAAGTAATGAAAGTGTTTTAAAAACAGGTGGGTCAAATTCTGTTTTTAAAATTTCCATTATGATGAAAATTTCAGTATTACAGGCTTCCAAATCCCAGCAGATGGGCCACTTGTTTAAAGGAGAGTTTGATATAATAAAGCATCTAAAAACAAGAGTTTGGATAATTCCTTAGGGTTGTTATGATGTGATTTGACTTATAATTGGAAATACCGTTTTATTCATTGTACTGATTTTCATTTCTCTTTTTCTTCTAGAATGTCTTGATTGTGGAAGTAAGTTCACATTTACTTTTAATATAACATTTATGACTTTTCTAACTTAGTATGCACCATCCTAAAGGTAAGCCAGGGAGAGAAATTCCTCTGCATCAGTTTTAATGGTGGGCTTGTGTTCTAAAGGAGTGAGATTGGTTTTTTGTAAAGACTACTTAGTAATTTGTTTTTACCAATAATGGAATGGTATACTTCCTACCTCTCTTTTTTTAGTTTGAAGTATTTTCTTTCTAAACATAACTCTCTCTCTCTATTTATCTATATATAATATATACATATATATCTTATATTTTATGTATATATATATATATCTTGCTTAGATTTTGTCTTATGTAATATTTGGTACATAAAAAATAATATTTATAATTTATAGACTATTTTCCATGTGTTATTATGTGCTAAAGTATTTTGTATCTTAGCACCGAGAGGCTAAGCAGTTTCCTAGGGTTACCAGCTAGTAAACTAAGGGAAACCTTTACTTCCTTTAGCTCAGTGGTTCTCAAAATGTGGTTCCCTAGACCAAAAGTATTAATATCAGACAAGAACCTACCGAATCAAAATATCTGTGATGAGGCCCAGCAAGCTATGCTTTAACAAGTTTCCGAGTGATTCTGATGCATGCTAAGGTTTAGGATCCCTTGTTTTTACTCATAAGTCACTTTCTCATTAAGGCCTTCCCTGGCCATCCTATATAAAATCTCATGTTTTCACACCGTCAACTTCGTATTCCTCCTCAATACTTTTATTTTCCTGATCACTTATCACTAACAGCCTCTCTCTCTCTCTCTCTCTCTCTCTATGTATATATATATATATATCACTTATCACTGTCTAACAGCCTCTCTTTATATATATATAATCTATAGATTATATATATATGCAGCATTGTGCAATCATTATCACGCTCAATTTTAAAACATTTTCATTTCCCCACAAAGAAACCCAATCCCCTTAGCCATCACTCCCAATTTTCCCTTCCCCCAGCACCTAGCAAACTGATCATCTACCTACTTGCTGTCTATAAGATTTGCCTATTCTGGACATTTTGTATAAATAGAATCATACAATATGTGGCCTTTTGTATCTGGCTTCTCTCACTTAATGTTTTCAAGGTTCATTCATGTTGTGGAGTATATCTGCACTCATTTCCTTTTTATTGCCAAATTGTATGGATAGACAGGTGTTCCTCAACTGTGTCCTGATAAACCCATCTGAAGTTGAAAATATCATAAGTTGAAAATGGATTTACTACTTTGATAAATCTATCCTAAAGTCAGAAAAATCTCATGTTGGAACCATCGTAAGTTGGATACCATCTGAATTACATTTTTGTTATCCATTCACTGGTTGACAGACGTTAGGTTGTTTCCACTGATGCTCCTTATTTCTCGTACCTGAAATGTCCTTATTCCCTCCCTTCTTATCCCATGTTTAAGTCATTTAAGACCCAGCTCAAACGTCACCTCCACAAAACCTTCCTTGATACCCCTTTCCTCTTCAATTCACTTGGACCTTTTGCATTTAATTTTAATTTTTATTTTTTTTAAGACAGAGTCTCACTCTGTCACCAGGCTGGAGTGCAGTGGTATGATCTCAGCTCACTAACTACTCTGCCTCCCAGGTTCAAGCAATTCTCATGTCTCAGCCTCCCAAGTAGCTGGGACTACAGGTGTGCGCCACCATGCCTGGCTAATTGTGTGTGTGTGTGTGTGTATGTATGTATGTATATATGTGTGTGTGTGTATATATATATATACACAAACATATATAAATATATATACATATATATATATACACACATATATAAATATATATACATATATATATATACACACACACACACATATATATATATATAGTTTTTTTTTTTTTAAGTAGAGATGGGGTTTTGCCATGTTGGCCAGGCTGGTCTGGCCTCAAGCCATCCTCCCACCTCGGCCTCGCAAAGTGCTGGTATTATAGGCATGAGCCACTGTGCCTGGCCTGCATTTCATTTTAATTATAAAATATTTTGAACTCAGAAAAAAGGGTATGCTGAATACCTACGTACCCACAAAAGTATTAACATTTTGCCATATTTGCTTCTGATCTTATTTTTTTTGAGAAATTAAAGATCATAATACAACTAAAGCCCCATTTCTTTCCCTTCATTCCCAGAAGTATGACAATTATCCTTAAAGTTGATATATATCATTCCCATGCATGTTTTTTATACTTCCCTAGTACAAGTTAGCTGTATCCTCTGCTCAGGGGCTCATCAAGCTGAATCAAGGGACTCATGATCCTCTTCAAAGTTCCTTCAGGTTGTTGGCAGAATTTAGTTCCTTGTGATTGTAGGACTGAGGGCCCGTTTTCTCACTGGCTGCTGGCCAGGGGTTGCTCCCAGATATTTAAAGGCTCATGCCCTAGCCCATGACAGTCTCACAACATGGCAGCTGACTTCTTCAAAACCAGCAGGAGAATCTTGCTCTAGTCTACCACATAACCTAATCACAGGAGCGGCTATCCCGTTATTTTCACAGATCCTGGTCACATTCAAGGGGAGGGAACCCTTCTGTGTGTGTACACCAGGAGGCAGGAATTTTTTTTTTCTTTTTCTTTTTTGTTAAAAAGTCTTAAAGTCTTTTATCCCTAAAGGAGGCAGGAATTTTGAGAGCCATCAGAATTCTGCCTACCACAGCCCAGAAATCTGCATTTTTCACAAGTCTCCAGCCATGATGTTTCTGATGGCTCACACTGCTTTATTCCATTTTTAAAGAGTATTTTTATTGAAAAGCATTAGGGTTATGGTTTAAAAAATATTTTCCCTAACAAAGATGGGTTTGTTTAGAGTCCTACTTTTGACTAAATAGCTGAGATTCACTTTTATGTAAAGTTCATTTTATAGCGTTATTAATTTGGGTGCCTTTAAAAATAGTATAAAGCATGTTTCTCGAGTGTAGTCTGTTAGCCACCTATATTGGAGAGTTGGGAGGAGAGAGTCTCTATCTTGAATTTATGGGAAAAATTCTAAAATACTTTTTATAATGAAGGACAACATCATAACTCCCTAATAAAATGTGCATGTATATATTCAAATTTGCTGTCATTGATCCTGCACCTACAAAATCCAGTCCTGGGGGCTGGCATTCTTACTGCTTGCTGAGGGCCAGATGATATAGATTCCAGAATATCTCCATGTAGATTTTGGTGAGAATTACTGTGCTGAAAAGAATGACAGTATTGCAGTTATACATGGGGGTTTTGGTACTTTATATTGTGACTCTGAATTTAAAGCTATGCAATGTCTTCTTTTTTGAAAGGATATAATTGACACTGGCAAAACAATGCAGACTTTGCTTTCCTTGGTCAGGCAGTATAATCCAAAGATGGTCAAGGTCGCAAGGTATGTATGACATTTTGACACAGAATATTTTCCTCATTTGAAGGGGGATTAAGTGATTGCTTCTTTTTAAGGATAAATGTTTTCAACTGTCATTTTATCTTCGAAAAGTAATGTAATCTCATATAAGACTTAAGATATAATCCTTTTAAATAATTTTGTCATGTGTTAATAAAGCTCATAATTACAGTCACTTCCTTGCTAATATTAACATTTGGTTTTCAGCATGCTAATTATATCAGTTTGTCCTGAATAGCATGGCAGAGGATTTTGGGCCCCCTTGCAAAATTAAGAATAAGGATTCCAAAGCGGGTGAGGAAGTGATAGGAAGGGGTGGGCCCTGAAGATCTGGACCTCCTGGAATTGAGTGATGAATGCTGCATCTTCTTTGTGTCTGTAGTGAAATTTTATAATGCCTGCTTCCTTTTTTATTAAGTCGGCCTCACCTCCTCACCTTACCTATGCTGTTTTACTTTTGCTTTTATAGTTCTACCTGTGTTTATTTCTCATTTTCGTTTCATCTCTCAACAACTCTGGGGTGGCATTATTATTCCCACTTTTCAGATAAGGTTACTGAGGCATAGGGAATTGTCCAAAGGTACAGAGCTAGTCCGCTATAGAGATGAGATTTGAACCCAGGGAACCTGGCTCACAGTTTATGCTTTTGCCTACCTTAAGTTTTTAATAGAGTGACATCAAACAAACATTTAAGAATATGTTTTTCTTTTCCTTTTATAATTTCATTAAAAACATTAAGTCTCTGATCAGTCTGCAGTTTTTATGTAGGGGTCAGGTAATGTTCTAACTTCTGCTTTTTCCTAAGTGATTAACAGGTTTTTATAAGCCCTTTTGAAAAAATCACGGTATCTGTCGAGCATCTTTGAATCAGAGTAAGCCTTCTAGTGAGTCATATGTCAGCAGTTTGACTGTATGGGCTTTTCTAATATCCAGTTCAAGTGTTTATCAGTGAGTTTTTCTTTTAAATAGATTTGGGACAGGTACTATGAGAGTATATAAGTGATACGTTATAGGACACTAACTAGTATCCTATGAAATGGCAAAAACTGCAATCACTTTTGCACCAACCAAATAGAAACTAATCAGTGCACTTGCTTATTTTTCTACATGCTCTTTAGGGTTTTAAATGTCAACCTACTGTGGCATAGACTTTAATCCTCTGGGTATTCTTTTGTTGTTCTTTCCTGGTATATGCTGTGGAATTGAGATAGACTGGTTCGTGAGCGAGAGATTTTGTGTTGCCACAGGTAGGACATGCTCAAACAATACTTGGGTCATTTCTTGACCCAAGTCATCTATTCACCATAGTTTTGTAGCACCGATCTTGCATACATTTCATGTATCTTCTTTGAACCCCACGTCAGTGCTGCTTATATGATACTCAGAAATTAAACACTAAGGAATAAGATTTTCAGGTAGGATTGAGTTTTGGAGGGTCACAAATCTTGTAATGTCTAATATTTCCACTCTCCCTGCTGAGAATTAGTTTTGGCTTCCTTGGAGGTGATATCGCCTCTGTTGAGTATAAGTGGCCTACTGTGATCACACCACTGCACTCCAGCCTGGGTGACAGAGTGAGACCCTGTCTCAGAAAAAAAAAAAAAAAAAAAGAATGCATGGCCTAGATGACTTCTAAGGTTTTTCCCACCCAGTTCCAGTTTTCATGTTCTAGGCAGAGCAGTAAAGTGAGAAACACATGGACTTGGGAGTTTAGTCTCGCATTTCACTGCCACTTAATCTGAGCGACTATTCCATATTTAATCTCTCTGAATGTATTTACTCATCTTTAAAGGGGAATGATTATTAACATCTTTTTCTCAGGGAAACTATATGAGTCAAGGAGATAATATATTTGAAAATCTTTTTAACTGCAAAGCGCTGTTTCACTGTTGGTTATAATGTGATTGATCTCATTGTAGTGAGCAGCTGCTTAATTGCGTTTTAGAATGTAGGGAAGATAGTAATATTTTTCACATTATATATGTAGCTGGTTCTGGAACTGTAAACATACTCCTTTTTTATGGAGATCTGAGTCACGTACCATAAAATTCACTCTTTTAAAGTTGTACAATCCAGTGGTTTTTGATATATTCAGAGTTGTGCATCTGCTACCACTATTTCATTTTGGAACCCAAAGAAACCTTGTACCCATTAGCAGTCATTCTCCCTTCTCCCAGCCCCTGGCAACTACTAATCTACTTTCTACAGAAAGTCCGTACAGATTTGTGTATTATGGACATTCCATATAAATGGACTCATGCAATATCCTGTCTTCTTTCACTTAGCATAGTGTTTTCAAGGTTCATCTAGGTTGGGGCATGTATCAGTACTTCATCCCTTGTTTTGGCTGAATAATATTTCATTGTACAAATATATCACATTTTGCTTATCCATCTGTTGGTGAACATTTGAGTTTCTACCTGTTGGCTTTTATGAATAATGTTGATTTGAATGTTTGTGTACAAGTATGAATACCTGTTTTCAGGTCTCTTGAGTATATAGTTGCTAGGTCATATAGTAACTCTGTGTTTAACATTTTGAGGAATTGCCCGACTATTTAACAAGGTATATGTACTGTTTTACACCAGTAACATATGAGGGTTCCAATATCTCCACATCCTTGACAACACTTGTTACTGTCCTTTTTATTGTAGCCATCCTAGTGGCTATGATGTGGTATCTCATTGTGGTTTTGATTTGTGTTTCTCTGATGCTGATGATGTTGAACATGTTTTCATCTGCTTATTGGCCATTTACATATATCTTCTTAAGAACGGTTACCCATTTACAGTATGGAAAATGCTTCAGATGCAACTCTAGTCATGCCTTAGAGATGGAGCTTTATTAAACATTCAGATCTCTAGGCATATGAAGTGCTGAGTTCTCTTGAACTCCTAATACAGATTGCACTGAGTTTAGTGATACCTTTTCTGGAGCATTCCTGAGTTCAGGTAGGGAGAAGGGTTTTTGCTGTGATTGGCTTGTTATGTTCTTTCTAAATGGAAATAGAATTGAAGTGTCTCCTCTCTCCATTTA
Some types of alternative splicing Alt. 3’ SS Alt. 5’ SS Exon skipping |pA |pA Different termination
Alternative splicing: Occurs in almost all of the 25,000 human gene transcripts
Alternative splicing in the alpha-tropomyosin gene (7 isoforms) Similar proteins but subtly different to suit different tissues
The alternative splicing champion Dscam transcript alternative splicing (Drosophila) 12 38 33 2 Each isoform has one exon 4, mutually exclusively Exon choice within each class is mutually exclusive. Codes for axon guidance proteins as well as function in the fly’s immune response 60 kb gene 115 total exons/gene 38,016 combinations
A cautionary note: 95% of human genes show evidence of alternative splicing Low levels could be simply mistakes. Or genes trying out new exons to see if they are useful, or give them a chancew to become useful (through mutation, evolution) But there are still a very large number documented cases so there is no doubt that alternative splicing greatly increases the complexity of the mamalian proteome.
1) Frank splicing mutations loss of an exon loss of a gene product or of an isoform (e.g., β-thalassemia, loss of a hemoglobin) 2) More rarely, but on the increase (in terms of discovery), activation of a false exon (e.g., muscular dystrophy, cystic fibrosis: protein function disrupted or protein terminated prematurely) 3) Theoretically, loss of a splicing factor (?) (lower organisms) Many human genetic diseases are caused by mutations causing missplicing
Therapeutic intervention at the level of pre-mRNA splicing Alternative splicing Unwanted alternative = included Use antisense skipped Bias alternative splicing Against an unwanted isoform (e.g., Bcl-X alt. spl.: Bcl-XS = promotes apoptosis; Bcl-XL = inhibits apoptosis and promotes cell growth, cancer) Pseudo exon activated disease Antisense = block and skip unwanted pseudo exon Alternative 5’ splicing Unwanted = longer exon Antisense shorter isoform
Nonsense mutation Antisense-induced skipping d x Expendable exon (e.g., protein with many repeated domains) Exon must be multiple of 3 in length to maintain reading frame after skipping
Therapeutic intervention at the level of pre-mRNA splicing • Interfere with improper splicing caused by splice site creation or activation • E.g., beta-thalassemia (R. Kole) in which a splice site has been created by a mutation • Use complementary DNA (antisense) • Rapidly degraded: Use modified bases, sugars: PNA, morpholino, 2’ OMe, • Normally, DNA-RNA hybrids + endogenous RNase H type activity RNA destruction • Modified antisense DNA circumvents this problem (don’t want mRNA destroyed here, want to correct its splicing
B. Bias alternative splicing ratios Target the unwanted isoform exon-intron joint. e.g., BCL-2 isoforms, one is pro-apoptotic, one anti-apoptotic. The latter increased in many cancersTarget the anti-apoptotic isoform in cancer cells. e.g., GABA-a-gamma-2 receptor (GABA = gamma amino butyric acid, a neurotransmitter) Long and short forms. Long form associated with mental illness. C. Skip offensive exons e.g., nonsense truncations in dystrophin
Sazani P, et al. and Kole R. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues Nat Biotechnol. 2002 Dec;20(12):1228-33. EGFP: Enhanced green fluorescent protein = model system Antisense “RNA” injected into tail vein, RNA was modified for stability Mutant globin intron has activated splice sites Actin promoter, universally expressed. Exon skipping yields green fluorescence
RNA modification for stabilization Instead of deoxyribose or ribose Modified phosphate Still base pairs OK
Even more extreme and more stable: peptide nucleic acids (PNAs) RNA modification B = a nucleic acid base Amide bonds, No ribose PNA = peptide nucleic acid Attached 1 to 4 lysines here Base pairs even better than natural nucleic acids (higher melting temperatures)
RNA modification Also can add 2’ MOE -O-CH2-CH2-O-CH3 MOE = methoxyethyl - Phosphorothioate deoxyoligonucleotides
No antisense: Antisense treatment in cell cultures (ex vivo) from themouse with the mutant EGFP gene Control oligo (C)(50 nt downstream)was ineffective. Max. effect = 40%
Dystrophin gene 2400 kb, mRNA = 14 kb, 79 exons: a giant gene Protein maintains muscle cell membrane integrity Mutation: Duchenne’s muscular dystrophy Some cases (~half) are due to stop codons (nonsense) in a repetitious exon (spectrin-like repeat) Deliver antisense to ends of exon with the nonsense mutation in mdx mice (model for Duchenne’s) to promote the skipping of the nonsense-bearing exon and so avoid truncation of the protein . Use AAV (adeno-associated virus) to deliver the antisense gene Measure: mRNA with skipped exon dystrophin protein muscle histochemistry for dystrophin
Use antisense RNA to target the branch point upstream of the offending exon 23 and the donor splice site downstream of the exon. protein mRNA = 3 X 71 79 BP = branch point; SD = splice donor Branch site (consensus = YNYTRAY) Sequences targeted by antisense
U7 promoter Consensus binding site for Sm proteins (to target to pre-mRNA) compl. to splice donor site compl. to branch Double target synergistic (loop?) (Kole) U7: normally hybridizes with seq. at 3’ end of histone mRNAs to effect cleavage; Binds 2 Sm proteins; in coiled (Cajal) bodies (RNA processing centers?); low concentrations (1000’s of molecules per cell) U7OPT: Change Sm binding site to consensus for all snRNAs (spliceosomal, for delivery there); high copy no.; no longer in coiled bodies; Now include anti-splice site segments as well. In permanent transfectants can effect > 50% inactivation of a globin cryptic site. Gorman, L., Suter, D., Emerick, V., Schumperli, D. & Kole, R.. Proc Natl Acad Sci U S A95, 4929-34 (1998).
Expression of U7 antisense construct RT-PCR U7OPT-A.S. Endog. U7 (slow onset =conclude slow mRNA turnover) 0 2 4 6 13 weeks Splicing assay (RT-PCR) Skip exon 23, after 2-4 wks. 0 2 4 6 8 13 weeks normal Dystrophin protein (Western)
dystrophin Muscle immuno-histochemistry dystrophin-associated antigens Normal Untreated mdx Treated mdx Top, middle ,and bottom
RNAi = RNA interference Short double stranded RNA molecules trigger the degradation of the complementary sequence in the cell, and can inhibit translation of the targeted mRNA Their introduction into a cell can greatly reduce any protein whose mRNA is targeted. Inhibition is usually incomplete in mammalian cells Thus “gene knockdown” as opposed to knock-out Alternative technologies: Antisense RNA: block translation or splicing Ribozymes: RNAs that cleave other RNAs, sequence specifically
siRNA = short interfering RNA miRNA = microRNA naturally occurring siRNA (Primary transcript) 2 nt overhangs (RNA-induced silencing complex) Single-stranded RNA More common No cleavage if imperfectly complementary, but translation inhibition Cleavage if perfectly complementary Protect against viral RNA, repetitive sequence transcripts
Introduction of long DS RNA into mammalian cells will trigger the “interferon response: Cessation of protein synthesis via activation of PKR (protein kinase RNA-activated), and phosphorylation of eIF2 Global degradation of mRNA (without any sequence specificity, RNase L activation) Spread to neighboring cells (induction and secretion of interferon) Most small DS RNAs do not trigger this response(<30 bp)
Generation of siRNA in vitro Chemical synthesis, annealing of 22-mers (bypasses dicing by Dicer) T7-mediated in vitro transcription of each complementary strand. Anneal to make long DS RNA and transfer to cells. Let Dicer make siRNA in the cell Also, can use controlled RNase to generatefragments (cheaper) Introduce perfect hairpin RNA into cells, let Dicer make siRNA Introduce imperfect hairpin RNA into cells(based on mRNA sequence) and let Dicer make miRNA
Limitations of siRNA silencing in mammalian cells Transient nature of the response (~3 days) Transfection problems (cell type, refractoriness) Non-renewable nature of siRNAs ($$)
Generation of siRNA in vivo (can give permanent knockdown) Not good for interferon- responsive cells Allow trans-association (TTTTT acts as a terminator) Most common, using U6 or H1 promoter U6 = small nuclear RNA used for splicing.H1 = RNA element of RNase P, used in tRNA processing. (Pol III) (Pol II) miRNA
Potential determinants of efficient siRNA-directed gene silencing siRNA Incorporation into the RNA-inducing silencing complex (RISC); stability in RISC. Base-pairing with mRNA. Cleavage of mRNA. mRNA Base-pairing with siRNA. The position of the siRNA-binding target region. Secondary and tertiary structures in mRNA. Binding of mRNA-associated proteins. The rate of mRNA translation. The number of polysomes that are associated with translating mRNA. The abundance and half-life of mRNA. The subcellular location of mRNA. Delivery Transfection (lipofection, electroporation, hydrodynamic injection (mouse)) Virus infection (esp. lentivirus (e.g., retrovirus like HIV that can integrate into non-dividing cells)
Some applications: Target oncogene Ras V12 (G12V) – silenced mutant ras without silencing the WT allele. Reduced the oncogenic phenotype (soft agar growth, tumor formation in nude mice) T-lymphocytes infected with anti-CCR5 RNA lower levels of this HIV receptor, and lower levels of infection (5-7X) Target an enzyme in mouse ES cells with a hairpin vector, Isolate a knockdown, make a mouse. Mouse shows same knockdown phenotype in its cells. So can target the whole mammalian organism, Just inject a GFP silencer gene into single cell embryos of a GFP mouse: Can find a chimeric GFP mouse with reduced GFP Progeny carry it in the germ line, Get a complete knockdown mouse, without ES cells (easier)
Delivery inan intact organism Hydrodynamic injection (sudden large volume) of straight siRNA (no vector) into the tail vein of a newborn mouse Get silencing of co-injected luciferase vector in a variety of tissues High throughput siRNA for gene discovery C.elegans, 19,000 genes Make a library 17,000 siRNA genes in plasmids in E. Coli. Feed the clones of E. coli to the worms. Look for phenotypes. 1700 genes examined for phenotypes (as of 2005) (e.g., fat metabolism phenotypes found)
Systemic RNAi: worms, plants, mammals In plants, get permanent post-transcriptional gene silencing (PTGS, transcriptional level) Worms: effect can last though several generations Amplified by reverse transcriptase Influx/efflux via a specific transmembrane protein (in worms) Raisons d’etre? Infection, many viruses go through a DS RNA phase. Repeat element silencing? (1 million Alus, + others half the human genome) Transcribed in either direction, so could form DS RNA, then RNAi inhibits action of SS ‘mRNA”
Discovery of RNA interference using double-stranded RNA Nature (1998) 391: 806 Discovered RNAi as they tracked down the effective agent in antisense experiments (DS RNA contaminating their SS antisense preparations had all the inhibitory activity) Paper characterized by nice controls and variations: Several genes, whole animal phenotype, protein product (GFP), RNA level (in situs) Phenotype of null mutant is specifically mimicked. Introns and promoter sequences ineffective. DS RNA from a different sequence + SS antisense RNA vs. the target: ineffective DS RNA linked (chimeric molecule) to a single stranded portion vs, the target: ineffective Transport of DS RNA between cells and amplification implied.
In situ hybridizations No probe No RNA injected SS antisense RNA DS RNA Transcript disappears (RNA degraded)
p. 173 Alnylam Pharmaceuticals Inc. Target : Apolipoprotein B, involved in binding cholesterol to low density lipoproteins (LDLs) Made in liver and jejunum. An important factor for high serum cholesterol and atherosclerosis. Tested ~80 siRNAs for reduction of ApoB mRNA in a hepatoma cell line in culture. Used 2 best. Stabilized the siRNA by: 1) Substituted sulfur for a hydroxyl oxygen at the 3’ end linkage (phosphorothioate) 2) Added some methyl groups to the sugars of the last 2 nucleotides 3) Conjugated cholesterol to the 3’ end. This dramatically improved serum half-life and efficacy. [Promoted entry into cells as well?] Injected into tail veins of mice.
Recovery of siRNA from injected mice. RPA = RNase protection assay cholesterol-conjugated siRNA non-conjugated siRNA Control RNAs Inject once a day for 3 days, measure 24 h after last injection 60-70% reduction in Apolipoprotein B mRNA