560 likes | 567 Views
Cellular Respiration is a catabolic and exergonic process that converts glucose into ATP and water. This process requires oxygen and takes place in organisms such as plants, animals, protists, bacteria, and fungi. Explore animations and learn about the different stages of cellular respiration.
E N D
glucose ATP Cellular Respiration • A catabolic, exergonic, oxygen (O2) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H2O). C6H12O6 + 6O2 6CO2 + 6H2O + energy
Cellular Respiration Animations: http://highered.mheducation.com/sites/9834092339/student_view0/chapter7/how_the_krebs_cycle_works.html http://highered.mheducation.com/sites/0072507470/student_view0/chapter25/animation__how_glycolysis_works.html http://highered.mheducation.com/sites/9834092339/student_view0/chapter7/how_the_nad__works.html http://www.wiley.com/college/test/0471787159/biology_basics/animations/electronTransportChain.html http://www.wiley.com/college/test/0471787159/biology_basics/animations/krebsCycle.html http://highered.mheducation.com/sites/9834092339/student_view0/chapter7/electron_transport_system_and_atp_synthesis.html http://highered.mheducation.com/sites/9834092339/student_view0/chapter7/electron_transport_system_and_formation_of_atp.html
Question: • In what kinds of organisms does cellular respiration take place?
Plants, Animals, Protists, Bacteria, and Fungi!! • Ex: Plants - Autotrophs: self-producers. • Ex: Animals - Heterotrophs: consumers.
Inner membrane space Matrix Cristae Outer membrane Inner membrane Mitochondria • Organelle where cellular respiration takes place.
Redox Reaction • Transfer of one or more electrons from one reactant to another. • Two types: 1. Oxidation 2. Reduction
Oxidation glucose ATP Oxidation Reaction • The loss of electrons from a substance. • Or the gain of oxygen C6H12O6 + 6O2 6CO2 + 6H2O + energy
Reduction C6H12O6 + 6O2 6CO2 + 6H2O + energy glucose ATP Reduction Reaction • The gain of electrons to a substance. • Or loss of oxygen or gain of hydrogen
Breakdown of Cellular Respiration • Four main parts (reactions). 1. Glycolysis (splitting of sugar) a. cytosol, just outside of mitochondria. 2. Grooming Phase a. migration from cytosol to matrix.
Breakdown of Cellular Respiration 3. Krebs Cycle (Citric Acid Cycle) a. mitochondrial matrix 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation a. Also calledChemiosmosis b. inner mitochondrial membrane.
1. Glycolysis • Occurs in the cytosol just outside of mitochondria. • Two phases (10 steps): A. Energy investment phase a. Preparatory phase (first 5 steps). B. Energy yielding phase a. Energy payoff phase (second 5 steps).
Glucose (6C) C-C-C-C-C-C 2ATP 2 ATP - used 0 ATP - produced 0 NADH - produced 2ADP + P C-C-C C-C-C Glyceraldehyde phosphate (2 - 3C) (G3P or PGAL) 1. Glycolysis A. Energy Investment Phase:
Glyceraldehyde phosphate (2 - 3C) (G3P) G3P G3P C-C-C C-C-C 4ADP + P 0 ATP - used 4 ATP - produced 2 NADH - produced 4ATP C-C-C C-C-C (PYR) (PYR) Pyruvate (2 - 3C) (PYR) 1. Glycolysis B. Energy Yielding Phase
1. Glycolysis • Total Net Yield 2 - 3C-Pyruvate (PYR) 2 - ATP (Substrate-level Phosphorylation) 2 - NADH
Enzyme O- C=O C-O- CH2 Adenosine P P P Substrate ADP (PEP) O- C=O C=O CH2 Product (Pyruvate) Adenosine P P P ATP Substrate-Level Phosphorylation • ATP is formed when an enzyme transfers a phosphate group from a substrate to ADP. Example: PEP to PYR
Fermentation • Occurs in cytosol when “NO Oxygen” is present (called anaerobic). • Remember: glycolysis is part of fermentation. • Two Types: 1. Alcohol Fermentation 2. Lactic Acid Fermentation
2ADP + 2 2ATP C C C C CC P 2NADH 2 NAD+ C C C C C Glycolysis 2 Ethanol 2 Pyruvic acid 2CO2 released 2 NAD+ 2NADH glucose Alcoholic Fermentation • Plants and Fungibeer and wine
Duff Beer Alcoholic Fermentation 2 Pyruvates + 2NADH + 2ATP 2 Ethanols + 2 CO2 + 2 NAD+
2ADP + 2 2ATP C C C C CC P 2NADH 2 NAD+ C C C C C C Glycolysis 2 Lactic acid 2 Pyruvic acid 2 NAD+ 2NADH Glucose Lactic Acid Fermentation • Animals (pain in muscle after a workout)
Lactic Acid Fermentation • End Products: Lactic acid fermentation 2 - ATP (substrate-level phosphorylation) 2 - Lactic Acids 2 – NAD+
Cytosol 2 CO2 C C C Matrix C-C 2 Pyruvate 2 NAD+ 2 Acetyl CoA 2NADH 2. Grooming Phase • Occurs when Oxygen is present (aerobic). 2 Pyruvate (3C) molecules are transported through the mitochondria membrane to the matrix and is converted to 2 Acetyl CoA (2C) molecules.
2. Grooming Phase • End Products: grooming phase 2 - NADH 2 - CO2 2- Acetyl CoA (2C)
Mitochondrial Matrix 3. Krebs Cycle (Citric Acid Cycle) • Location:mitochondrial matrix. • Acetyl CoA (2C) bonds toOxalacetic acid (4C - OAA) to makeCitrate (6C). • It takes2 turnsof the Krebs Cycletooxidize1 glucosemolecule.
1 Acetyl CoA (2C) OAA (4C) Citrate (6C) Krebs Cycle 2 CO2 FADH2 (one turn) 3 NAD+ FAD 3 NADH ATP ADP + P 3. Krebs Cycle (Citric Acid Cycle)
2 Acetyl CoA (2C) Citrate (6C) OAA (4C) Krebs Cycle 4 CO2 2 FADH2 (two turns) 6 NAD+ 2 FAD 6 NADH 2 ATP 2 ADP + P 3. Krebs Cycle (Citric Acid Cycle)
3. Krebs Cycle (Citric Acid Cycle) • Total net yield(2 turnsof Krebs Cycle) 1.2 - ATP (substrate-level phosphorylation) 2. 6 - NADH 3. 2 - FADH2 4. 4 - CO2
Inner Mitochondrial Membrane 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation (Chemiosmosis) • Location:inner mitochondrial membrane. • Uses ETC (cytochrome proteins) and ATPSynthase (enzyme) to make ATP. • ETC pumps H+ (protons) across innermembrane (lowers pH in innermembrane space).
4. Electron Transport Chain (ETC) and Oxidative Phosphorylation (Chemiosmosis) • The H+ then move via diffusion(Proton Motive Force) through ATP Synthase to make ATP. • All NADH and FADH2converted to ATP during this stage of cellular respiration. • Each NADH converts to 3 ATP. • Each FADH2 converts to 2 ATP (enters the ETC at a lower level than NADH).
Inner membrane space Matrix Cristae Outer membrane Inner membrane 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation (Chemiosmosis)
Chemiosmosis Couples the Electron Transport Chain to ATP Synthesis
Inner Mitochondrial membrane Oxidative phosphorylation. electron transport and chemiosmosis Glycolysis ATP ATP ATP H+ H+ H+ H+ Cyt c Protein complex of electron carners Intermembrane space Q IV I III ATP synthase II Inner mitochondrial membrane H2O FADH2 2 H+ + 1/2 O2 FAD+ NADH+ NAD+ ATP ADP + P i (Carrying electrons from, food) H+ Mitochondrial matrix Chemiosmosis ATP synthesis powered by the flow Of H+ back across the membrane Electron transport chain Electron transport and pumping of protons (H+), which create an H+ gradient across the membrane Figure 9.15 Oxidative phosphorylation • Chemiosmosis and the electron transport chain
higher H+ concentration Intermembrane Space 1H+ 2H+ 3H+ ATP Synthase H+ Inner Mitochondrial Membrane E T C 2H+ + 1/2O2 ADP + ATP P H2O H+ NADH + H+ NAD+ (Proton Pumping) lower H+ concentration Matrix 4. ETC and Oxidative Phosphorylation (Chemiosmosis for NADH)
higher H+ concentration Intermembrane Space 1H+ 2H+ ATP Synthase H+ Inner Mitochondrial Membrane E T C ADP + ATP P 2H+ + 1/2O2 H2O FADH2 + H+ FAD+ H+ (Proton Pumping) lower H+ concentration Matrix 4. ETC and Oxidative Phosphorylation (Chemiosmosis for FADH2)
ATP TOTAL ATP YIELD 1. 04 ATP - substrate-level phosphorylation 2. 34 ATP - ETC & oxidative phosphorylation 18 ATP- converted from 6NADH - Krebs Cycle 38 ATP - TOTAL YIELD
Eukaryotes (Have Membranes) 02 ATP - glycolysis(substrate-level phosphorylation) 04 ATP - converted from 2 NADH - glycolysis 06 ATP - converted from 2 NADH - grooming phase 02 ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6NADH - Krebs cycle 04 ATP - converted from 2 FADH2– Krebs cycle 36 ATP - TOTAL
Glucose Cytosol Mitochondria Krebs Cycle Glycolysis 2 Acetyl CoA 2 Pyruvate 2NADH 2 ATP (substrate-level phosphorylation) 6NADH 2FADH2 2NADH ETC and Oxidative Phosphorylation 2 ATP (substrate-level phosphorylation) 2ATP 4ATP 6ATP 18ATP 4ATP 2ATP Maximum ATP Yield for Cellular Respiration(Eukaryotes) 36 ATP (maximum per glucose)
Prokaryotes (Lack Membranes) • Total ATP Yield 02 ATP - glycolysis(substrate-level phosphorylation) 06ATP - converted from 2 NADH - glycolysis 06 ATP- converted from 2 NADH - grooming phase • ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6NADH - Krebs cycle 04 ATP - converted from 2 FADH2- Krebs cycle 38 ATP - TOTAL
Question: • In addition to glucose, what other various food molecules are use in Cellular Respiration?
Catabolism of VariousFood Molecules • Other organic molecules used for fuel. 1. Carbohydrates: polysaccharides 2. Fats: glycerol and fatty acids 3. Proteins: amino acids
What are the reactants required in order for cellular respiration to take place?
In what part of cells does glycolysis take place? Where does the Krebs Cycle take place?
How many ATP molecules (net) are produced at the end of glycolysis?
Where are the proteins of the electron transport chain located? A) cytosol B) mitochondrial outer membrane C) mitochondrial inner membrane D) mitochondrial intermembrane space E) mitochondrial matrix
The molecule that functions as the reducing agent (electron donor) in a redox or oxidation-reduction reaction • gains electrons and gains energy. • loses electrons and loses energy. • gains electrons and loses energy. • loses electrons and gains energy. • neither gains nor loses electrons, but gains or loses energy