1 / 50

J/ y production in Au+Au and Cu+Cu Collisions at RHIC

1. J/ y production in Au+Au and Cu+Cu Collisions at RHIC. Taku Gunji CNS, University of Tokyo . Heavy Ion Café 2007/2/10 . 2. Outline. Physics Motivation J/ y in the medium J/ y measurement at SPS J/ y measurement at RHIC d+Au collisions and cold matter effects

catalin
Download Presentation

J/ y production in Au+Au and Cu+Cu Collisions at RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 J/y production in Au+Au and Cu+Cu Collisions at RHIC Taku Gunji CNS, University of Tokyo Heavy Ion Café 2007/2/10

  2. 2 Outline • Physics Motivation • J/y in the medium • J/y measurement at SPS • J/y measurement at RHIC • d+Au collisions and cold matter effects • Au+Au and Cu+Cu collisions • Comparison to the theoretical models • Summary & Outlook

  3. 3 Physics Motivation • J/y suppression in QGP due to the Debye Color Screening T.Matsui & H. Satz PLB178 416 (1986) • Signature of de-confinement • Debye Color Screening • Debye Radius < Rcc No formation of c-cbar bound states • Suppression depends on temperature (density) • Recent quenched lattice QCD calculations • Melting temp. for J/y ~1.5-2.5Tc • Melting temp. for cc,y’ ~1.1Tc T. Hatsuda, M. Asakawa, PRL. 92 (2004) 012001 S. Datta, et al., PRD69 (2004) 094507

  4. 4 J/y = Thermometer of QGP • 2 Key points • Feed down contribution from y’ and cc • All J/y = ~0.6 J/y (direct) + ~0.3cc + ~ 0.1y’ • Fraction is not well-understood experimentally • TJ/y ~ 2Tc and Tc, Ty’ ~ 1.1Tc Expected J/y (All) Suppression Pattern “Sequential Melting” Temperature can be deduced from magnitude of suppression. 温度

  5. 5 • cc coalescence • Dissociation by • comovers J/y in the Medium • J/y production and evolution of the medium • All stage of collisions modify the J/y yield. Initial stage Hot and dense medium Nuclear medium Mixed Phase Freeze out • Gluon • Shadowing • CGC • Nuclear • Absorption • Cronin effect • Color screening • (Dissociation by • thermal gluons) Cold Matter Effect Final state Effect

  6. 6 J/y measurement at SPS • NA38(S+U@19.4 GeV)、NA50(p+A@19.4 GeV, Pb+Pb@17.3GeV) Nuclear Absorption of J/y L: effective path length of J/y in nuclear target Anomalous suppression relative to nuclear Absorption • Very promising to study J/y production in A+A collisions at higher collision energy. • 10x √sNN at RHIC • 2-3x gluon density at RHIC Pb+Pb PB

  7. 7 PHENIX Experiment • PHENIX can measure J/y in wide rapidity range Central Arms: Hadrons, photons, electrons J/y  e+e- |h|<0.35 Pe > 0.2 GeV/c Df = p (2 arms x p/2) • Muon Arms: • Muons at forward rapidity • J/y  m+m- • 1.2< |h| < 2.4 • Pm > 2 GeV/c • Df = 2p

  8. 8 RHIC cold nuclear matter effects (CNM)

  9. Xd XAu J/ in South y < 0 rapidity y Anti Shadowing Shadowing Xd XAu J/ in North y > 0 X 9 J/y in d+Au collisions • Understand the cold matter effects • Gluon Shadowing • Nuclear absorption • Cronin effect (pT broadening) • Coverage of XAu in d+Au at PHENIX gluons in Pb / gluons in p South muon arm (y < -1.2) : • large XAu  0.090 Central arm (y  0) : • intermediate XAu  0.020 North muon arm (y > 1.2) : • small XAu  0.003 Eskola, et al., Nucl. Phys. A696 (2001) 729-746.

  10. 10 Low x2 ~ 0.003 (shadowing region) 0 mb RdAu 3 mb Results of RdAu vs. y • d+Au experiments at RHIC RdAu vs. Rapidity • Tendency is consistent with the shadowing effects. • Nuclear absorption cross section : 0~3 mb. • need more data to quantify CNM effects.

  11. 11 J/y production in Au+Au and Cu+Cu collisions at RHIC

  12. 12 RAA 1 Au+Au PHENIX Final Cu+Cu PHENIX Preliminary 0 RAA vs. Npart • Final results for Au+Au : nucl-ex/0611020(submitted to PRL) • Analysis for Cu+Cu will be finalized soon!

  13. 13 Observation 1Different suppression pattern between mid-rapidity and forward-rapidity

  14. 14 RAA vs. Npart in Au+Au 1 • RAA vs. Npart. • |y|<0.35 • 1.2<|y|<2.2 RAA • Different behavior in RAA • between mid-rapidity and • forward-rapidity. • J/y suppression is larger • at forward-rapidity than • at mid-rapidity • S ~ 0.6 for Npart>100 Bar: uncorrelated error Bracket : correlated error 0 1 S = RAA (1.2<|y|<2.2)/RAA (|y|<0.35) 0

  15. 15 RAA and CNM effects RAA • CNM effects • Gluon shadowing + nuclear absorption • J/y measurement in d+Au collisions. 1 RHIC CNM effects (sabs = 0, 1, 2mb at y=0, y=2) R. Vogt et al., nucl-th/0507027 0 • Significant suppression relative to CNM effects. • CNM effects predict larger suppression at mid-rapidity, while data shows larger suppression at forward-rapidity.

  16. 16 Open charm yield in Au+Au @ 200 GeV =0 =2 Larger suppression by CGC? • Heavy quark production is expected to be suppressed due to “Color Glass Condensate” at forward-rapidity. K. L. Tuchin hep-ph/0402298 • Larger suppression of J/y at forward-rapidity (Npart>100) could be ascribed to Color Glass Condensate?

  17. 17 Larger suppression by larger feed down? • Pythia calculation (done by S. X. Oda) Red : 88 gg  c1cg  J/y Green : 89 gg  c2cg  J/y Blue : 105 gg  c2c  J/y Magenta : MSEL 5 bbbar  J/y Larger suppression of J/y yield at forward rapidity might be partly (~15%) due to the broad distribution of J/psi from chi_c.

  18. 18 Observation 2J/y suppression from final state effect is stronger at RHICcompared to SPS

  19. 19 Comparison of RAA to NA50 NA50 at SPS (0<y<1) PHENIX at RHIC (|y|<0.35) PHENIX at RHIC (1.2<|y|<2.2) • RAA vs. Npart • NA50 at SPS • 0<y<1 • PHENIX at RHIC • |y|<0.35 • 1.2<|y|<2.2 • J/y Suppression (CNM • effects included) is similar • at RHIC (y=0) compared • to at SPS (0<y<1). Bar: uncorrelated error Bracket : correlated error Global error = 12% and Global error = 7% are not shown

  20. 20 RAA and CNM NA50 at SPS (0<y<1) PHENIX at RHIC (|y|<0.35) PHENIX at RHIC (1.2<|y|<2.2) • RAA at RHIC and SPS RHIC CNM effects (sabs = 0, 1, 2mb at y=0, y=2) R. Vogt et al., nucl-th/0507027 SPS CNM effects (sabs = 4.18 mb) NA50, Eur. Phys. J. C39 (2005):355 Bar: uncorrelated error Bracket : correlated error Global error = 12% and Global error = 7% are not shown

  21. 21 RAA/CNM vs. Npart NA50 at SPS (0<y<1) PHENIX at RHIC (|y|<0.35) PHENIX at RHIC (1.2<|y|<2.2) • RAA/CNM at RHIC and SPS. CNM: • sabs = 4.18 mb for SPS • sabs = 1 mb for RHIC • Additional sys. error due to the uncertainty of CNM (0-2mb) is shown as box. Here, SPS data will have sys. errors. • J/y suppression relative • to CNM effects is larger at • RHIC for the similar Npart. • (much larger • at forward rapidity) Bar: uncorrelated error Bracket : correlated error Global errors (12% and 7%) are not shown here. Box : uncertainty from CNM effect

  22. 22 RAA vs. pT • Suppression trend is similar for forward and mid rapidity. • Suppression consistent with flat.

  23. 23 Exercise :Comparison to theoretical models

  24. 24 Dissociation by thermal gluons • Dissociation by thermal gluons • Successfully describe J/y suppression at SPS. • Gluon density extrapolated to RHIC energy R. Rapp et al., nucl-th/0608033 Nu Xu et al., nucl-th/0608010 Calculation for only y=0 • At mid-rapidity, • suppression is • weaker compared • to the dissociation • scenario in QGP.

  25. J/y c c-bar c 25 Recombination of J/y • Coalescence of c-cbar • Abundant ccbar pairs at RHIC [10-30@central Au+Au] • Dissociation + Recombination of J/y R.Rapp et al, EPJC43 (2005) 91 N. Xu at al, nucl-th/0608010 Kinetic formation model Transport model total total recombination dissociation dissociation recombination Magnitude of suppression matches better. However, tendency can not be reproduced well.

  26. 26 <pT2> vs. centrality • Another test for recombination No recombination Recombination (pQCD charm ) Recombination (thermal charm)

  27. 27 Kinetic formation model. Dissociation + recombination model (R. Rapp and so on) • Charm cross section (binary scaling) • NLO pQCD calc, PHENIX, STAR gc ~ 10 at RHIC, ~30 at LHC ¼ sc+g X.N.Wang PLB540 (2002) 62 Gluon thermal dist. (T=0.35 GeV) sJ/y+g k[GeV]

  28. 28 Transport model Dissociation + recombination model (Nu Xu et al.) ccbar  J/y +g J/y +g ccbar R. L. Thews Eur. Phys. J C43, 97 (2005)

  29. 29 Sequential Melting • RAA/CNM vs. Bjorken energy density • t0 = 1 fm/c. Be careful! • Not clear t0 at SPS • Crossing time ~ 1.6 fm/c Here, SPS data will have sys. errors . • J/y suppression at SPS • can be understood • from the melting of y’ • and cc. F. Karsch et al., PLB, 637 (2006) 75

  30. 30 Sequential Melting • RAA/CNM vs. Bjorken energy density • t0 = 1 fm/c. Be careful! • Not clear t0 at SPS and RHIC. • t0 < 1 fm/c at RHIC • Nucl. Phys. A757, 2005 Here, SPS data will have sys. errors. Bar: uncorrelated error Bracket : correlated error Global error = 12% is not shown here. Box : uncertainty from CNM effects F. Karsch et al., PLB, 637 (2006) 75 dET/dy : PHENIX, PRC 71, 034908 (2005)

  31. 31 Sequential Melting • RAA/CNM vs. Bjorken energy density • t0 = 1 fm/c Be careful! • t0 < 1 fm/c at RHIC Here, SPS data will have sys. errors. • Direct J/y melting at RHIC? • Error is large and need better • CNM measurements at RHIC. • Need to measure feed-down contribution at RHIC energy. Bar: uncorrelated error Bracket : correlated error Global error = 12% and 7% are not shown here. Box : uncertainty from CNM effects

  32. 32 Threshold Model • All J/y is suppressed above a threshold density. • Fate of J/y depends on the • local energy density • ( participants density, n) • Similar model to the sequential melting and associated to “onset of J/y suppression”. • nc = 4.0 fm-2 matches to our mid-rapidity data. (cf. n~4.32 fm-2 in most central Au+Au collisions) • K. Chaudhuri, nucl-th/0610031 • Calculation for only y=0. • Describes well mid-rapidity data. • How about forward-rapidity? nc = threshold participant density

  33. 33 Summary • First high statistic data of J/y in Au+Au and Cu+Cu collisions at mid-rapidity and forward-rapidity are available. • Suppression is larger at forward-rapidity than at mid-rapidity for Npart>100. • Suggesting initial state effect such as Color Glass Condensate? • More feed down contribution at forward-rapidity? • RAA/CNMseems to be lower at RHIC compared to at SPS • However, suppression at mid-rapidity isn’t so strong as expected by the models (destruction by thermal gluons) extrapolated from SPS to RHIC. • Suppression + Recombination models match better. • Not consistent with the picture of only y’ and cc melting at RHIC. Suppression of directly produced J/y?

  34. Backup slides

  35. Regeneration should cause narrowing of pT – does it? • Mean pT2 pretty flat • as expected in regeneration picture of Thews • Yan picture almost flat to start with, gives slight fall-off with centrality Caution - <pT2> from fits often unreliable for AA (stable when restricted to pT<5 GeV/c here) Better for theoretical comparisons to look at RAA(pT)? nucl-ex/0611020

  36. FG Mixed event BG cc1 cc2 Meeg-Mee [GeV] Meeg-Mee [GeV] First cc observation • From run5 p+p central arms • Further analysis is on going.

  37. Color Glass Condensate • At RHIC, coherent charm production in nuclear color field at y>0 (Qs > mc) anddominant at y>2.  Description by Color-Glass-Condensate sdAu= spp(2x197)a SPS FNAL RHIC

  38. (in gold) = Xd - XAu XAu, XF dependence of a sdAu= spp(2x197)a • Shadowing is weak. • Not scaling with X2 but scaling with XF. • Coincidence? • Shadowing • Gluon energy loss • Nuclear Absorption • Sudakov Suppression? • Energy conservation • hep-ph/0501260 • Gluon Saturation? • hep-ph/0510358 E866, PRL 84, (2000) 3256NA3, ZP C20, (1983) 101 PHENIX, PRL96 (2006) 012304

  39. Pb-Pb @ 158 GeV NA60 In-In 158 GeVpreliminary SPS J/y suppression • Dissociation by gluons

  40. Dissociation by gluons sDiss • Cross section : g+J/y c + c-bar • LO calculation • Decay width k[GeV] T = 350 MeV, G = 0.8 fm/c

  41. Dissociation by gluons • Cross sectionはLO計算。正しいのか? • Binding Energyの小さいy’やccに適応可能か?

  42. 5 Pb-Pb @ 158 GeV Successful models (1) • Dissociation by thermal gluons • Based on LO pQCD cross section between J/y (cc) and g R. Rapp PLB92 (2004) 212301 X.N.Wang PLB540 (2002) 62 100 20 40 ET [GeV]

  43. PHENIX – p+p J/ψ – new run6 data • Forward rapidity falloff steeper than 3-gluon pQCD model - black curve [Khoze et al. , Eur. Phys. J. C39, 163-171 (2005)] • Slightly favors flatter shape at mid-rapidity than most models • BR•tot = 178 ± 3 ± 53 ± 18 nb • Harder pT than lower energy & softer at forward rapidity PHENIX - hep-ex/0611020 <pT2> = 3.59±0.06 ±0.16 <pT2> =4.14±0.18 +0.30-0.20

  44. Statistical Model (1) • Statistical Hadronization • 元々のMotivationはSPSで<J/y>/<h>が中心衝突度に依存しない事。Hadron生成量は統計Modelで記述できる。 • Hadronの生成量 • もうひとつのパラメター:gu,d,s,c(Fugacity) • u,d,s,c quarkがどれほど化学平衡に達しているかという指標 • 実際のYield = g x ni

  45. Statistical Model (2) • RHICではgs~ 1 (SPSでは、gs<0.7) • Strange quarkがようやく平衡状態 • Charm quarkは重い。殆どがHiggs Mass • 衝突初期にしか出来ない。 • QGP中での熱的生成量(exp-(2mc/Tc)) ~ 10-7 • なのに、平衡状態を仮定して、J/yのYieldを計算 • gcが平衡状態からのずれを担う。 cc-bar cross section (experiment, FONLL) Model Input: Nccdir, T, m, Volume このModelはp+p, Au+AuにおけるCharm Productionに大きく依存する。

  46. Statistical Model (3) • Charm Production Cross sectionによる大きな不確定性がある。 • NNLO pQCD計算 ds/dy = 63.7+95.6-42.3mb • ds/dy = 123 mb (PHENIX) • 2倍程度、大きい。 • CDFが測定したCharm Cross • SectionもNNLOより • 1.5倍程度大きい。 NNLO pQCD計算のCharm Cross Sectionでは、よく合っているが、 PHENIXの実験結果では不一致。

  47. Recombination –In medium Formation • Medium中でもJ/y生成。 • Kinetic Formation Model • Transport Model

  48. Recombination –In medium Formation • 問題点と疑問点 • Charm Cross Sectionの大きな不確定性 • p+p, Au+AuにおけるCharm y, pT分布? • QGP中ではCharmはDiffusiveに動いているが、理由はまだ分かっていない。 • J/y+gccbar のCross Sectionが正しいか? • ccやy’に対するRecombinationは考えられていない。 • Ncの与え方。どのモデルもNcは時間に対して一定。正しい? • Charmの熱的生成はない、Charm数は保存。 • DメソンへのRecombinationも考慮すべき。NcNc(t)、tと共に減少するはず。ただ、DメソンとJ/yではFreezeout時間が異なるか? • J/yの方が圧倒的に早く生成されるなら、正しいかも。 • Naïveには、ccが空間的に近くにないといけない。ccがCoupleするよりも、u,dとCoupleする方が多いはず。 Au+AuにおけるCharm, D, J/y生成 を理解しなければならない。

  49. 24 BW fit of D-meson spectra From STAR. Freeze out and collective Behavior of charm. AuAu Central charm hadron AuAu Central , K, p Charm Production at RHIC Yield vs. pT for two rapidity ranges in p+p collisions. Charm vs. y Need to understand charm production and its modification in the medium. Non-photonic e spectra from PHENIX. Implication of charm Energy loss Non-photonic e v2 from PHENIX. Thermalization of Charm.

More Related