520 likes | 719 Views
TM 745 Forecasting for Business & Technology. ARIMA (Box-Jenkins). =. Y. observatio. n. (. realizatio. n. ). at. t. t. =. +. e. Pattern. t. ARIMA Models. =. Y. function. of. past. values. t. +. random. shocks. =. e. +. e. f. (. Y. ,. ). -. -. t. k. t. k.
E N D
TM 745Forecasting for Business & Technology ARIMA(Box-Jenkins)
= Y observatio n ( realizatio n ) at t t = + e Pattern t ARIMA Models
= Y function of past values t + random shocks = e + e f ( Y , ) - - t k t k t Assumptions
Notation AR I MA p d q p = order of autoregressive d = order of integration (differencing) q = order of moving average
= q + f + e Y Y - 1 1 t o t t $ = q + f Y Y - 1 1 t o t Processes • ARIMA (1, 0, 0)
= q + f + e Y Y - 1 1 t o t t f £ | | 1 f Þ 1 drift / trend f Processes • ARIMA (1, 0, 0) • Autoregressive • Stationarity
= m - q e + e Y - 1 1 t t t $ = m - q e Y - 1 1 t t Moving Average Process • ARIMA (0, 0, 1)
= + e Y Y - 1 t t t $ = Y Y - 1 t t Integrated Processes • ARIMA (0, 1, 0)
= + q + e Y Y - 1 t t o t $ = + q Y Y - 1 t t o Deterministic Trend • ARIMA (0, 1, ,0) 1
Model Identification • (Figure 7-1, p. 277) • AutoRegressive ARIMA(1, 0, 0), f=0.8 ACF(1) = f = 0.8 ACF(2) = f2 = 0.64 ACF(3) = f3 = 0.512 ACF(4) = f4 = 0.410
Model Identification • (Figure 7-1, p. 277) • AutoRegressive ARIMA(1, 0, 0), f=0.4 ACF(1) = f = 0.4 ACF(2) = f2 = 0.16 ACF(3) = f3 = 0.064 ACF(4) = f4 = 0.0256
Model Identification • (Figure 7-1, p. 277) • AutoRegressive ARIMA(1, 0, 0), f=-0.8 ACF(1) = f = -0.8 ACF(2) = f2 = 0.64 ACF(3) = f3 = -0.512 ACF(4) = f4 = 0.410
= + e Y Y - 1 t t t $ = Y Y - 1 t t e = - Y Y - 1 t t t Example; Stock Prices • Based on ACF and PACF, appears to be a random walk
Non-Stationarity • Two Primary Types • Non-Stationary in Level (Mean) • Non-Stationary Variance
Example; FAD Apparel ACF and PACF indicate random walk or more likely, a non- stationary process
= - z Y Y - 1 t t t FAD Apparel (First Differences)
Fad Apparel (1st Diff) ACF and PACF suggest MA model on zt.
2 s µ Y Y t = Y KY - 1 t t Power Consumption • Variance of series is proportional to level • Common in product demand, economy, stock market
= + ln( Y ) ln( Y ) ln( K ) - 1 t t - = ln( Y ) ln( Y ) ln( K ) - = 1 t t Y KY - 1 t t = - ¢ z ln( Y ) ln( Y ) - 1 t t t Transformation
AutoCorrelation (Zt) Suggests MA(1) with q = -0.15 ARIMA(0,1,1)
= e - q e ¢ z - 1 1 t t t - = e - q e ln( Y ) ln( Y ) - - 1 1 1 t t t t = + ln( Y ) ln( Y ) 0 . 15 e - - 1 1 t t t Power Model
= f + f + e Y Y Y - - t 1 t 1 2 t 2 t = f + f + e 2 Y Y Y Y Y Y - - - - - t 1 t 1 t 1 2 t 1 t 2 t t 1 = f + f + e 2 E [ Y Y ] E [ Y ] E [ Y Y ] E [ Y ] - - - - - t 1 t 1 t 1 2 t 1 t 2 t t 1 PACF’s (Partial Derivation) Consider an AR(2) process, Multiply both sides by Yt-1 Take Expectations
= f + f Cov ( Y Y ) Var ( Y ) Cov( Y Y ) - - - - 1 1 1 2 1 2 t t t t t = f + f + e 2 E [ Y Y ] E [ Y ] E [ Y Y ] E [ Y ] - - - - - t 1 t 1 t 1 2 t 1 t 2 t t 1 = f + f Cov ( Y Y ) Var ( Y ) Cov ( Y Y ) - - - 1 1 1 2 1 t t t t t PACF’s (Partial Derivation) by stationarity, independence by stationarity, Cov(Yt-1Yt-2) = Cov(YtYt-1)
f Cov ( Y Y ) cov( Y Y ) = f + - - 1 2 1 t t t t 1 Var ( Y ) Var ( Y ) t t = f + f ACF ( 1 ) ACF ( 1 ) 1 2 = f + f Cov ( Y Y ) Var ( Y ) Cov ( Y Y ) - - - 1 1 1 2 1 t t t t t PACF’s (Partial Derivation) Dividing both sides by Var(Yt-1)
= f + f ACF ( 1 ) ACF ( 1 ) 1 2 PACF’s (Partial Derivation) Total AC = Direct AC + Indirect AC ACF = PACF + Indirect
= f + f + e Y Y Y - - t 1 t 1 2 t 2 t = f f + e 2 Y Y Y Y Y Y + - - - - - t 2 t 1 t 2 t 1 t 2 t t 2 2 PACF’s (Partial Derivation) Consider an AR(2) process, Multiply both sides by Yt-2
= f f + e 2 Y Y Y Y Y Y + - - - - - t 2 t 1 t 2 t 1 t 2 t t 2 2 = f ACF ( 2 ) + ACF f ( 2 ) 1 2 PACF’s (Partial Derivation) Taking expectations, miracle 37b
= f + f ACF ( 1 ) ACF ( 1 ) 1 2 = f ACF ( 2 ) ACF + f ( 2 ) 1 2 PACF’s (Partial Derivation) Two eqs, two unknowns Solve for f1, f2 from ACF(1), ACF(2) Estimate f1 from PACF(1)