330 likes | 713 Views
Kinetic Molecular Theory of Gases. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points ; that is, they possess mass but have negligible volume.
E N D
Kinetic Molecular Theory of Gases • A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume. • Gas molecules are in constant motion in random directions. Collisions among molecules are perfectly elastic. • Gas molecules exert neither attractive nor repulsive forces on one another. • The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy
Force Area Barometer Pressure = Units of Pressure 1 pascal (Pa) = 1 N/m2 1 atm = 760 mmHg = 760 torr 1 atm = 101,325 Pa
10 miles 0.2 atm 4 miles 0.5 atm Sea level 1 atm
Constant temperature Constant amount of gas Boyle’s Law Pa 1/V P x V = constant Boyle's Law ( scuba style! ) ACSBR physics mini project – YouTube http://www.youtube.com/watch?v=cIVMkVSIAbw P1 x V1 = P2 x V2
726 mmHg x 946 mL P1 x V1 = 154 mL V2 A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL? P1 x V1 = P2 x V2 P1 = 726 mmHg P2 = ? V1 = 946 mL V2 = 154 mL P2 = = 4460 mmHg
As T increases V increases
Temperature must be in Kelvin Variation of gas volume with temperature at constant pressure. Charles’ & Gay-Lussac’s Law VaT V = constant x T T (K) = t (0C) + 273.15 V1/T1 = V2/T2
1.54 L x 398.15 K V2 x T1 = 3.20 L V1 A sample of carbon monoxide gas occupies 3.20 L at 125 0C. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant? V1/T1 = V2/T2 V1 = 3.20 L V2 = 1.54 L T1 = 398.15 K T2 = ? T2 = = 192 K charles law demonstration - Google Videos Giant Koosh Ball in Liquid Nitrogen! - YouTube
Constant temperature Constant pressure Avogadro’s Law Va number of moles (n) V = constant x n V1/n1 = V2/n2
4NH3 + 5O2 4NO + 6H2O 1 volume NH3 1 volume NO 1 mole NH3 1 mole NO Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure? At constant T and P
Boyle’s law: V a (at constant n and T) Va nT nT nT P P P V = constant x = R 1 P Ideal Gas Law Charles’ law: VaT(at constant n and P) Avogadro’s law: V a n(at constant P and T) R is the gas constant PV = nRT
The conditions 0 0C and 1 atm are called standard temperature and pressure (STP). Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L. R = (1 atm)(22.414L) PV = nT (1 mol)(273.15 K) PV = nRT R = 0.082057 L • atm / (mol • K)
1 mol HCl V = n = 49.8 g x = 1.37 mol 36.45 g HCl 1.37 mol x 0.0821 x 273.15 K V = 1 atm nRT L•atm P mol•K What is the volume (in liters) occupied by 49.8 g of HCl at STP? T = 0 0C = 273.15 K P = 1 atm PV = nRT V = 30.6 L
P1 = 1.20 atm P2 = ? T1 = 291 K T2 = 358 K nR P = = T V P1 P2 T2 358 K T1 T1 T2 291 K = 1.20 atm x P2 = P1 x Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and 18 0C is heated to 85 0C at constant volume. What is the final pressure of argon in the lightbulb (in atm)? n, V and Rare constant PV = nRT = constant = 1.48 atm Egg in a Bottle.wmv - YouTube
m V PM = RT dRT P Density (d) Calculations m is the mass of the gas in g d = M is the molar mass of the gas Molar Mass (M ) of a Gaseous Substance d is the density of the gas in g/L M =
Deviations from Ideal Behavior of Gases • Deviation from ideal behavior is large at high pressure and low temperature • At lower pressures and high temperatures, the deviation from ideal behavior is typically small, and the ideal gas law can be used to predict behavior with little error.
Deviation from ideal behavior as a function of temperature • As temperature is decreased below a critical value, the deviation from ideal gas behavior becomes severe, because the gas CONDENSES to become a LIQUID.
J. D. van der Waals corrected the ideal gas equation in a simple, but useful, way (a) In an ideal gas, molecules would travel in straight lines. (b) In a real gas, the paths would curve due to the attractions between molecules.
Mixtures of Gases • Dalton's law of partial pressure states: • the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases.
OR XA Ptotal = PA (XA = mole fraction of A and PA = partial pressure of gas A) Partial Pressure in terms of mole fraction
Mole fraction • What is the mole Fraction of Gas A in mixture I? • What is the mole fraction of Gas B in mixture II?
Example: If there are 3 moles of gas A, 4 moles of gas B and 5 moles of gas C in a mixture of gases and the pressure of A is found to be 2.5 atm, what is the total pressure of the sample of gases? XA = 3 = 0.2 3+4+5 PA = 2.5 atm PT = PA/ XA = 2.5/0.2 = 12.5 atm
2KClO3 (s) 2KCl (s) + 3O2 (g) PT = PO + PH O 2 2 Bottle full of oxygen gas and water vapor
Graham’s Law of Effusion • Graham’s law states that the rates of effusion of two gases are inversely proportional to the square roots of their molar masses at the same temperature and pressure: • Graham’s Law of Effusion • diffusion of a gas - YouTube
Graham’s Law of Effusion • The velocity of effusion is also inversely proportional to the molar masses:
But the time required for effusion to take is directly proportional to the molar masses: The density of the gas is also directly proportional to the molar masses: Graham’s Law of Effusion
Graham’s Law of Effusion • Compare the rate of effusion for hydrogen and oxygen gases.