1 / 12

Linear Programming

Solve a linear programming problem with given constraints and maximize the objective function using tableau method.

cfraley
Download Presentation

Linear Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linear Programming Graphical

  2. Linear Programming (Lp '((-0.6 -0.7 -0.5 0) (2.4 3 2 1200) (0 2.5 1.5 600) (5 0 2.5 1500))) Max 0.6X1 + 0.7X2 + 0.5x3 s.t. 2.4X1 + 3.0X2 + 2.0X3 <= 1200 0.0X1 + 2.5X2 + 1.5X3 <= 1600 5.0X1 + 0.0X2 + 2.5X3 <= 1500 Initial Tableau Basis X1 X2 X3 X4 X5 X6 Q Z-row -0.6 -0.7 -0.5 0.0 0.00 0.0 0.00 X4 2.4 3.2 2.0 1.0 0.0 0.0 1200 X5 0.0 2.5 1.5 0.0 1.0 0.0 1600 X6 5.0 0 2.5 0.0 0.0 1.0 1500 continued  … rd

  3. Final Tableau LP Optimum = 295.2 0.0 0.0 0 0.22 0.016 0.0144 295.2 1.0 0.0 0 0.5 -0.6 -0.04 180.0 0.0 1.0 0 0.6 -0.32 -0.288 96 0.0 0.0 1 -1.0 1.2 0.48 240 rd

  4. Linear Programming P9-27 (LP '((-7.8 -9.4 -2.6 0)(4.2 11.7 3.5 1800)(0.8 4.3 1.9 2700) (12.7 3.8 2.5 950))) 0 0.0 0.74 0.67 0.0 0.39 1588.8 0 1 0.26 0.096 0.0 -0.032 142.28 0 0.0 0.70 -0.39 1.0 0.066 2062.43 1 0.0 0.12 -0.03 0.0 0.09 32.23 rd

  5. LP Example (LP '((-2 -3 0)(3 5 15)(6 2 12)))  Max 2x1 + 3x2 -1/5 0 3/5 0 9 subject to 3x1 + 5x2 <= 15 3/5 1 1/5 0 3 x2 6x1 + 2x2 <= 12 24/5 0 -2/5 1 6 x1, x2 >= 0 0 0 7/12 1/24 37/4 0 1 1/4 -1/8 9/4 1 0 -1/12 5/24 5/4 LP Optimum 37/4 0 0 7/12 1/24 37/4 0 1 1/4 -1/8 9/4 1 0 -1/12 5/24 5/4 6 (5/4, 9/4) 0 3 x1 Feasible. Evaluate all corner points rd

  6. Max 2x1 + 3x2 Min 15Y1 + 12Y2 subject to 3x1 + 5x2 <= 15 s.t. 3Y1 + 6Y2 >= 2 6x1 + 2x2 <= 12 5Y1 + 2Y2 >= 3 Basis X1 X2 X3 X4 Q 1.5 Y2 Z-row -2 -3 0 0 0 W(0, 1.5) = 18 X3 3 5 1 0 15 W(2/3, 0) = 10 X4 6 2 0 1 12 1/3 W(7/12, 1/24) = 37/4 -1/5 0 3/5 0 9 (7/12, 1/24) 3/5 1 1/5 0 3 3/5 2/3 Y124/5 0 -2/5 1 6 0 0 7/12 1/24 37/4 0 1 1/4 -1/8 9/4 1 0 -1/12 5/24 5/4 rd

  7. LP Example Max 2X1 + 3X2 s.t. 3X1 + 5X2 <= 15 6X1 + 2X2 <= 12 x1 x2 x3 x4 -2 -3 0 0 0X3 3 5 1 0 15X4 6 2 0 1 12 -1/5 0 3/5 0 9 X2 3/5 1 1/5 0 3X4 24/5 0 -2/5 1 6 rd

  8. Final Tableau Max 2X1 + 3X2 0 0 7/12 1/24 37/40 1 1/4 -1/8 9/4 1 0 -1/12 5/24 5/4

  9. Tableaus X2 5 4 Max 3x1 + 4x2s.t. 2x1 + 3x2 <= 12 AX = B 5x1 + 3x2 <= 15 Initial Tableau at corner point (0, 0) -3 -4 0 0 0 2 3 1 0 12 5 3 0 1 15 Tableau at corner point (0, 4) -1/3 0 4/3 0 16 2/3 1 1/3 0 43 0 -1 1 3 Final Tableau Tableau at corner point (3, 0) 0 0 11/9 1/9 49/3 0 -7/5 0 ¾ 9 0 1 5/9 -2/9 10/3 0 7/5 1 -2/5 61 0 -1/3 1/3 1 1 3/5 0 1/5 3 X1 0 3 6 rd

  10. Final Tableau 0 0 11/9 1/9 49/3 Max 3x1 + 4x2 0 1 5/9 -2/9 10/3 s.t. 2x1 + 3x2 <= 12 1 0 -1/3 1/3 1 5x1 + 3x2 <= 15 AX = B A-1AX = A-1B = X = A-1B Objective Function row = (0 0 11/9 1/9 49/3) x1 = 1 x2 = 10/3 rd

  11. (LP '((-5 -3 -2 0)(2 3 2 24)(4 2 1 8)(1 4 6 36))) Max 5x1 + 3x2 + 2x3 How much for another yard of wool? s.t. 2x1 + 3x2 + 2x3 <= 24 (wool) cotton? 4x1 + 2x2 + 1x3 <= 8(cotton) silk? 1x1 + 4x2 + 6x3 <= 36(silk) Look at tableau; solve problem mentally without tableau. Specify the values for x1 to x6 using the final tableau below. 1/8 0 0 0 5/4 1/8 29/2 -25/8 0 0 1 -5/4 -1/8 19/2 23/8 1 0 0 3/4 -1/8 3/2 -7/4 0 1 0 -1/2 1/4 5 rd

  12. Final Tableau Basis X1 X2 X3 X4 X5 X6 Q Z 1/8 0 0 0 5/4 1/8 29/2 X4 -25/8 0 0 1 -5/4 -1/8 19/2 X2 23/8 1 0 0 3/4 -1/8 3/2 X3 -7/4 0 1 0 -1/2 1/4 5 How much more another unit of cotton ? wool? silk? rd

More Related