400 likes | 589 Views
Low density matter probed in multifragmentation reactions. W. Trautmann GSI Helmholtzzentrum , Darmstadt, Germany. Workshop „ Simulating the Supernova Neutrinosphere with Heavy Ion Collisions “ ECT* Trento , April 2014. Lynen L ühning M ü ller Pochodzalla Sann Schwarz Sfienti
E N D
Low density matterprobed in multifragmentation reactions W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany Workshop „Simulating the Supernova Neutrinosphere with Heavy Ion Collisions“ ECT* Trento, April 2014
Lynen Lühning Müller Pochodzalla Sann Schwarz Sfienti et al. ALADIN 1990-2004 historical and personal MUSIC III ToF V. Serfling
isospin dependent multifragmentation of relativistic projectiles main result: reduced symmetry energy required for liquid drop description of fragments at freeze-out K. Turzó
the nuclear phase diagram as we explore it with multifragmentation critical points from Jaqaman et al., PRC 27 (1983) 2782 Müller & Serot, PRC 52 (1995) 2072 Schnack & Feldmeier, PLB B 409 (1997) 6 NN2000 Strasbourg
astrophysical motivation dashed: adiabatic evolution, e.g., collapse (along constant entropy per baryon S/B)
ALADiN spectrometer Z resolution full acceptance for projectile fragments at E>400 A MeV dynamic range from Z<2 to Z=93 with good resolution ALADiN Magnet TP-MUSIC IV 107Sn 124Sn HodoCT A resolution Target TOF-Wall LAND 2m main topic: projectile (multi)fragmentation correlation functions with hodoscopes (160 elements) in coincidence A. Schüttauf et al., NPA 607, 457 (1996)
V. Serfling et al., PRL 80 (1998) discrete states from correlations 5Li Au+Au 50-200 A MeV central, 10% σreact 150 A MeV secondary decay effects with QSM at T=5 MeV He4 g.s. vs. 20.21+ Li5 g.s. vs. 16.66 Li6 2.19 vs. 4.31+5.65 Be8-1 g.s. vs. 3.04 Be8-2 g.s. vs. 17.64+ Be8-3 17.64+ vs. 3.04 kinematic acceptance 5Li 4He 8Be HeLi Hedt T=5 MeV universal and limit 5Li
can fragments survive in the hot environment? Au+Au@1000 lines from Typel et al. (2010) chemical freeze-out THeLi thermal freeze-out 4He, 5Li ALADiN Zmax Mott points determined experimentally using equilibrium assumptions for cluster emissions from 40Ar, 64Zn + 112,124Sn @ 47AMeV Hagel et al., PRL108 (2012) Zbound T=5 MeV for excited state temperatures (thermal freeze-out) W.T. et al., PRC76 (2007)
isotopic effects in chemical freeze-out from double isotope yield ratios: THeLi (3,4He,6,7Li) (Albergo's formula) TBeLi (7,9Be,6,8Li) C. Sfienti et al., PRL 102 (2009)
isotopic effects in chemical freeze-out from double isotope yield ratios: THeLi (3,4He,6,7Li) (Albergo's formula) TBeLi (7,9Be,6,8Li) issue: dynamical compound stability vs. fragmentation phase space C. Sfienti et al., PRL 102 (2009)
temperatures from SMM ensemble calculations experimental isotope temperatures mean microcanonical temperatures
S. Fritz et al., PLB 461 (1999) densities from correlations p+p without filter Au+Au 1 A GeV RAu=6.7 fm R≈8 fm R≈10 fm R≈9.5 fm ρ/ρ0 = 0.1 – 0.4 from radius of sphere and number of spectator nucleons
U. Milkau et al., PRC 44 (1991) densities from moving source fits Coulomb energies according to the fission systematics for decaying nuclei of Z=79 and Z = 39 inclusive reactions on Au
density in dynamical approaches QMD with simulated annealing clusterization algorithm (Aichelin, Puri et al.) ALADIN data MST SACA figures from Vermani and Puri, EPL 85 (2009) 60 fm/c SACA method identifies fragments at 60 fm/c and ρ/ρ0 ≈ 0.6
ALADiN experiment S254 Z resolution Projectile fragmentation of neutron-rich and neutron-poor projectiles: 124Sn, 107Sn, 124La (1.14 ≤ N/Z) ALADiN Magnet TP-MUSIC IV 107Sn 124Sn HodoCT A resolution Target TOF-Wall LAND 2m main result: reduced symmetry energy of fragments in the hot environment; will affect neutron capture rates in SN C. Sfienti et al., PRL 102 (2009), R. Ogul et al., PRC 83 (2011)
SMM ensemble calculationsused for analysis meant to reproduce participant-spectator geometry (SMM: Statistical Multifragmentation Model) mass variation with excitation energy taken into account; fixed to reproduce exclusive yields Zbound = ΣZi with Zi≥2 and model study of sensitivities A.S. Botvina, N. Buyukcizmeci, R. Ogul et al.
standard modified Statistical Multifragmentation ModelSMM R. Ogul et al., PRC 83 (2011) main result: neutron-rich fragment yields require low symmetry energy exp 124Sn standard 124La exp standard
surface alone experiment Isoscaling: Experiment vs. SMM 25 14 8 4 symmetry term reduced at chemical freeze-out in multifragmentation reactions
The 2000 Collaboration S. Bianchin,K. Kezzar, A. Le Fèvre, J. Lühning, J. Lukasik, U. Lynen, W.F.J. Müller, H. Orth, A.N. Otte, H. Sann, C.Schwarz, C. Sfienti, W. Trautmann, J. Wiechula, M.Hellström, D. Henzlova, K. Sümmerer, H. Weick, P.Adrich, T. Aumann, H. Emling, H. Johansson,Y. Leifels, R. Palit, H. Simon, M. De Napoli, G. Imme', G.Raciti, E.Rapisarda, R. Bassini, C. Boiano, I. Iori, A. Pullia,W.G.Lynch, M. Mocko, M.B. Tsang, G. Verde, M. Wallace, C.O. Bacri, A. Lafriakh,A. Boudard, J-E. Ducret, E.LeGentil, C. Volant, T. Barczyk, J. Brzychczyk, Z. Majka, A. Wieloch, J. Cibor, B. Czech, P. Pawlowski, A. Mykulyak, B. Zwieglinski, A. Chbihi, J. Frankland and A.S. Botvina
The largest fragment as order parameter <MIMF> percolation describes the partitions well Kreutz et al., Nucl. Phys. A556 (1993)
early fragment recognition and persistence classical molecular dynamics X. Campi et al., Phys. Rev. C 67, 044610 (2003)
momentum widths in projectile fragmentation ALADIN and FRS at GSI prop.√Z T ≈ 15 MeV σ0 = 115 MeV T ≈ 14 MeV Schüttauf et al., NPA 607, 457 (1996) Föhr et al., PRC 84, 054605 (2011) T = 15 MeV expected for cold Au in the Goldhaber model
kinetic temperatures in projectile fragmentation interpretedwithinthe „hot“ Goldhabermodelof Bauer prop.√Z T ≈ 15 MeV Odeh et al., PRL 84, 4557 (2000) with analysis following Bauer, PRC 51, 803 (1995) Bauer‘s numerical solution for ρ/ρ0 = 1 for ρ/ρ0 = 0.3
A=124 ALADIN experiment S254 "Mass and isospin effects in multifragmentation" secondary beams from 142Nd 107Sn, 124La 124Sn, 197Au 600 A MeV Z contour lines represent limiting temperatures following temperature dependent Hartree-Fock calculations using Skyrme forces N
evaporation attractor line R.J. Charity, PRC 58, 1073 (1998)
nuclear structure and memory effects ALADIN experiment S254 SMM ensemble calculations by A.S. Botvina, R. Ogul et al. lines SMM symbols exp 124Sn 124La 107Sn
238U 56Fe nuclear structure and memory effects ALADIN experiment S254 U, Fe from FRS SMM ensemble calculations by A.S. Botvina, R. Ogul et al. lines SMM symbols exp 124Sn 107Sn 124Sn 124La 107Sn
projectile fragmentation at 1 AGeV (FRS at GSI) 112Sn + 112Sn 124Sn + 124Sn SMM calculations with ensembles from ALADIN study A/Z of the initial projectiles 2.24 vs. 2.48 data: V. Föhr et al., PRC 84, 054605 (2011) analysis: H. Imal et al., arXiv:1403.4786 [nucl-th]
Systems: Au + Au 40 to 150 AMeV Xe + Sn 50 to 250 AMeV C + Au 95 to 1800 AMeV INDRA at GSI Z = 3 at 100 A MeV central γβ y November 1997 – April 1999
Systems: Au + Au 40 to 150 AMeV Xe + Sn 50 to 250 AMeV C + Au 95 to 1800 AMeV INDRA at GSI Z = 3 at 100 A MeV peripheral γβ y November 1997 – April 1999
INDRA at GSI From the Fermi to the relativistic domain Invariant cross sections for Au + Au at peripheral impact parameters
summary of S254 summary of S254 1.secondary beams essentialto enhance effects 2.small changes of global observableswith N/Z important for isolating isospin effects 3. isotope distributions exhibit memory and structure effects 4. isoscaling obeyed with high accuracy; reduced symmetry term for hot fragments 5. N/Z dependence of nuclear caloric curve indicates phase-space driven instability rather than Coulomb instability 6. spectator neutron source with T=4 MeV, invariant with system N/Z.