1 / 18

The Structure and Function of  -Glucosidase from Human Gut Bacterium Ruminococcus Obeum

The Structure and Function of  -Glucosidase from Human Gut Bacterium Ruminococcus Obeum. Kemin Tan and Andrzej Joachimiak 2009 NIGMS Workshop: Enabling Technologies for Structural Biology March 4-6, 2009. Gut Microbiota. Division. Actinobacteria. Bacterioidetes. Genus. Species.

Download Presentation

The Structure and Function of  -Glucosidase from Human Gut Bacterium Ruminococcus Obeum

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Structure and Function of -Glucosidase from Human Gut Bacterium Ruminococcus Obeum Kemin Tan and Andrzej Joachimiak 2009 NIGMS Workshop: Enabling Technologies for Structural Biology March 4-6, 2009

  2. Gut Microbiota Division Actinobacteria Bacterioidetes Genus Species Clostridium { Strain Firmicutes Eubacterium { Gnavus obeum … etc. Ruminococcus … etc. ATCC 29174 Proteobacteria … etc.

  3. Known Functions • Maturation • Development of innate immunity • Production of essential vitamins etc. Nondigestible food components serve as sources of energy and carbon for the human gut bacteria. The Journal of Nutrition. 2007

  4. Over-Represented Genes Statistics for Some Genomes by COG Catagories Genome NameCOG genes MetabAA Percent MetabCarb Percent MetabLipid Percent Bordetella parapertussis 12822 3654 490 13.41% 197 5.39% 239 6.54% Corynebacterium diphtheriae 1576 174 11.04% 107 6.79% 57 3.62% Cytophaga hutchinsonii 2226 163 7.32% 126 5.66% 97 4.36% ATCC 33406 Enterococcus faecalis V583 2210 180 8.14% 262 11.86% 61 2.76% Escherichia coli K12 3566 367 10.29% 377 10.57% 103 2.89% Geobacter sulfurreducens PCA 2527 190 7.52% 99 3.92% 64 2.53% Haloarcula marismortui 2642 268 10.14% 140 5.30% 95 3.60% ATCC 43049 Listeria innocua 2391 212 8.87% 278 11.63% 59 2.47% Methanocaldococcus jannaschil DSN 2661 1427 106 7.43% 51 3.57% 14 0.98% Porphyromonas gingivalis W83 1233 78 6.38% 59 4.82% 40 3.27% Pseudomonas syringae pv.tomato 4177 458 10.96% 261 6.25% 180 4.31% str.DC3000 Ruminococcus obeum 2393 224 9.36% 245 10.24% 61 2.55% ATCC 29174 Silicibacter pomeroyi DSS 3399 5561 6.36% 204 6.00% 194 5.71% Sulfolobus solfataricus P2 2105 202 9.60% 128 6.08% 86 4.09% Thermoplasma volcanium GSS1 1214 117 9.64% 89 7.33% 50 4.12% Vibrio parahaemolyticus 3259 346 9.80% 207 5.87% 123 3.49% RIMD 2210633

  5. Glycosyl Hydrolases In Ruminococcus obeum ATCC 29174, 245 genes in carbohydrate transport and metabolism, 22 genes as glycosyl hydrolases (GH). GH1, 1 GH2, 2 GH3, 3 GH18, 1 GH20, 1 GH31, 1 (a-glucosidase) GH32, 4 GH42, 3 GH43, 4 GH77, 4

  6. Data collection Phasing Refinement Crystal Structure Determination • X-ray Diffraction Data Collection and Processing: SBCcollect APS, Structural Biology Center, 19ID beamline. HKL3000 program suite data integration and scaling. • Structure Determinaion: HKL3000 program suite 50 out of 54 Se sites located and used in phasing. 46 sites Se sites matched NCS and used for averaging and phase improvement • Model Building: HKL3000 program suite 3 cycles of Arp/warp model building: 1244 out 1332 residues built (93.4%). sequence docked: 1211 residues.

  7. Dimer Structure in Crystal and Solution Calculated monomer molecular weight: 77.4kD, including vector derived residues.

  8. Homologous Structures • Human intestinal maltase-glucoamylase PDB: 2QLY Overall sequence identity: 28% • Sulfolobus solfataricus a-Glucosidase PDB:2G3M Overall sequence identity: 26%

  9. amylose amylopectin Maltase-Glucoamylase(MGAM) (1-4) high activity Sucrase-Isomaltase(SI) (1-4) (1-6) (1-4) (exohydrolases) Human Intestinal MGAM and SI a-Amylase (endohydrolase) Glucose

  10. Catalytic Site Catalytic domain R.obeum a-glucosidase: 366 a.a. Human NtMGAM: 362 a.a. Structural alignment: • 310 a.a. aligned • RMSD: 1.68Å • Sequence identity: 29.6% Catalytic nucleophile: the residue D307 in magenta. Acid/base catalyst (possible): the residue D420 in green.

  11. Substrate Hydrolyzed (mM) Substrate Specificity Maltose Sucrose Lactose • At least a maltase

  12. Access to Catalytic Site • Glucoamylase ?

  13. N- and C-terminal Domains

  14. A Common Enzyme in Gut Microbiota • Iden. Posi. Gap • Coprococcuseutactus ATCC27759 67% 80% 0% • Clostridium sp. L2-50 69% 80% 0% • Clostridium phytofermentans ISDG 59% 75% 0% • Faecalibacteriumprausnitzii M21/2 56% 72% 1% • Clostridium botulinumc str. Eklund 53% 71% 2% • Clostridium perfringens CPE str. F4969 54% 70% 1% • ……….. • Petrotogomobilis SJ95 46% 65% 2%

  15. amylose amylopectin Maltase-Glucoamylase(MGAM) (1-4) high activity Sucrase-Isomaltase(SI) (1-4) (1-6) (1-4) (exohydrolases) Glycosyl Hydrolases glucose

  16. Conclusions 1. PDB: 3FFJ 2. Member of gut microbiota can also utilize digestible carbohydrates. 3. Potential competition between gut micobiota and human host in utilization of carbohydrate resources. 4. Regulation ? ……

  17. Acknowledgements • ANL/MCSG • A. Jochimiak • H. An, • G. Babnigg, • L. Bigelow, • A. Binkowski, • C-s. Chang, • S. Clancy, • G. Cobb, • M. Cuff, • M. Donnelly, • C. Giometti, • W. Eschenfeldt, • Y. Fan, • C. Hatzos, • R. Hendricks • G. Joachimiak, • H. Li, • L. Keigher, • Y-c. Kim, • N. Maltseva, • E. Marland, • S. Moy, • R. Mulligan, • B. Nocek, J. Osipiuk, , M. Schiffer, • A. Sather • G. Shackelford, • L. Stols, • C. Tesar, • R-y. Wu, • L. Volkart, • R-g. Zhang, • M. Zhou, • ANL/SBC • N. Duke, • S. Ginell, • F. Rotella • R.Wilton • Univ. College • London @ EBI, • J. Thornton, • C. Orengo, • M. Bashton, • R. Laskowski, • D. Lee, • R. Marsden, • D. McKenzie, • A. Todd, • J. Watson • Northwestern Univ. • W. Anderson, • O. Kiryukhina • D. Miller, • G. Minasov, • L. Shuvalova, • X. Yang, • Y. Tang • Univ. of Toronto • A. Edwards, • C. Arrowsmith, • A. Savchenko, • E. Evdokimova, • J. Guthrie, • A. Khachatryan, • M. Kudrytska, • T. Skarina, • X. (Linda) Xu • Washington • Univ. • D. Fremont, • T. Brett, • C. Nelson, • Univ. of Chicago • O. Schneewind, • D. Missiakas, • P. Gornicki, • S. Koide, ITCSG • W-j. Tang, • B. Roux, • J. L. Robertson • M.R. Rosner, • T. Kossiakoff, ITCSG • V. Tereshko, • G. Montelione, • Ruthgers Univ. NESGC • T. Terwilliger, • Los Alamos, ITCSG • Z. Derewenda, Univ. • of Virginia, ITCSG • Z. Dauter, NCI • J. Liang, Univ. • of Illinois • D. Sherman, U. Michigan • Univ. of Texas • SWMC • Z. Otwinowski, • D. Borek, • A. Kudlicki, • A. Q. Mei, • M. Rowicka • Univ. of Virginia • W. Minor, • M. Chruszcz, • M. Cyborowski, • M. Grabowski, • P. Lasota, • P. Miles, • M. Zimmerman, • H. Zheng • Funding: NIH and DOE • 17 • 17

  18. Thank you

More Related