280 likes | 429 Views
Part III ILC BCD Cavity. Maximum Use of Potential Performance Maximum Use of each Cavity Performance Maximum Availability. Problems of Cavity for ILC Application. Large Scatter of Maximum Gradient Large Dynamic Lorentz Detuning Long MTBF for Critical Components
E N D
Part IIIILC BCD Cavity • Maximum Use of Potential Performance • Maximum Use of each Cavity Performance • Maximum Availability Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Problems of Cavityfor ILC Application • Large Scatter of Maximum Gradient • Large Dynamic Lorentz Detuning • Long MTBF for Critical Components > 20 years --- < 5 %/year • Maximum Use of Potential Performance • Maximum Use of each Cavity Performance • Maximum Availability Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Common Numbers are necessary • Number of Spare Cryomodules < 30 • How many modules can we replace in a scheduled shutdown ? • MTBF / Life Time ? • How many critical component in a cryomodule ? • Number of cavities to be repaired in a year < ? • How is the lowest gradient we have to operate ? • Distribution of the Max. Gradient Where do we set the threshold gradient ? Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
ILC BCD Cavity Parameters Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
DESY Cavity SupportSystem is weak. Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Scatter of Maximum Gradient Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Gradient Distribution First Test Before Installation After Installation Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Lorentz ( Maxwell ) Detuning Kjacket Ktuner Fr Kcavity F F Fz Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Mechanical Oscillation Modes 972MH Cavity Multi-cell Mode (I) f = 87 Hz Tuner Multi-cell Mode (II) f = 169 Hz Tuner Mode f = 294 Hz Single-cell Mode f = 3.91 kHz Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Stiff Jacket Baseplate (Ti) 2.8 t 3.5 t Thick Titanium Baseplate No Stiffener Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Dynamic Lorentz Detuning Results at TTF DPkly < 10 % →Detuning angle < 12 deg. , Df < 46Hz Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
TTF Lever Arm Tuner Top Heavy Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
TTF Blade Tuner Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Slide Jack Tuner Drive Shaft Invar Rod Piezo Stack Taper Roller Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Tuner and Jacket Motor Outside Piezo Replacement OK 2K He Line Invar Rod Support Base Titanium Jacket Drive Shaft Slide Jack Piezo Stack Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi Input Coupler Port
A prototype coaxial ball screw tuner Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Input Coupler Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
TTF-3 Coupler Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Input Coupler for Baseline Cavity An improved input coupler design for simplicity with no tuning mechanism. TRISTAN Type Coaxial Disk Ceramic Warm window Cold window Beam pipe 5K cooling here Door-knob conversion 80K cooling here Vacuum port 80 K 5 K 2 K Static Loss 5 W 1.1 W 0.05 W Dynamic Loss 3 W 0.2 W 0.03 W Qext = 2.0 x 106 Prf = 350 kW Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Coupling Waveguides Components for High Power Test Stand Input Couplers Doorknobs Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Coupler Opening Piezo can be replaced Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
HOM Coupler Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Gradient Control Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi
Cavity Voltage Error & Gain Reduction Input Power Error Coupling Error Tuning Error Phase Error Beam Phase Hayama ILC Lecture, 2006.5.23, Shuichi Noguchi