420 likes | 605 Views
E N D
BENEMÉRITO INSTITUTO NORMAL DEL ESTADO “GRAL. JUAN CRISÓSTOMO BONILLA”LICENCIATURA EN EDUCACIÓN PREESCOLARCURSO: PENSAMIENTO CUANTITATIVODOCENTE: DRA. ALEXANDRA ROSSANO ORTEGA“TRATAMIENTO DIDÁCTICO Y CONCEPTUAL DE LA NOCIÓN DE NÚMERO Y SU RELACIÓN CON LAS OPERACIONES ARITMÉTICAS, SUS PROPIEDADES Y SUS ALGORITMOS CONVENCIONALES” Integrantes del equipo:Barranco Luna Itzel Carrillo Anaya María Fernanda Dossetti Minutti Mayra Lucero Guerrero Salinas Mayra Elizabeth Luna Álvarez Dulce Ivonne Meneses Reyes María de Lourdes Grado: 1° Grupo: “A”
NumeralSímbolo o grupos de símbolos que representan a un número
Los números naturales son :{ 1, 2, 3, 4, 5 … }El “0” no se considera un numero natural, el “0” es un numero entero.
Primeras Nociones sobre la Suma y la RestaEn el conjunto de los números naturales para todo número natural N el que le sigue es N+1 y se llama sucesor de N. Y de N se dice que es el antecesor de N+1
Fortalecimiento de las nociones de suma y resta • Introduce la cualidad de que los números se pueden descomponer • En la descomposición intervienen los antecesores de numero que se descompone así para comprender la suma. • Se centra en una colección de objetos y la consideración de las partes que la forman.
La razón de considerar dos partes no es fortuita se esta preparando el conocimiento de las operaciones aritméticas básicas las cuales son operaciones binarias. • Por ejemplo: el 7 se puede descomponer en 3 y 4, en 1 y 2 y 4 etc.
El mecanismo de la descomposición • Todo numero natural (N) su antecesor es N. • En la descomposición intervienen los antecesores del numero que se descompone Ejemplo : los antecesores de 10 son 9,8,7,6,5,4,3,2,1. • En cualquier representación figurada estos antecesores representan partes del todo.
La suma como operación aritmética • Ahora la acción va en sentido inverso las partes van a construir un todo. • La articulación de estos tratamientos es acorde con el principio de que las operaciones intelectuales directas e inversas se deben trabajar en la escuela de forma simultanea o con gran proximidad
El planteamiento del tema se hace en un contexto para la mayoría de los alumnos en el marco de la resolución de problemas. • El problema se plantea mediante una pregunta y una imagen que da contenido a la interrogante a resolver, lo cual se soluciona mediante un procedimiento apropiado.
El procedimiento utilizado se encuentra próximo al saber de los alumnos: • Ellos saben por el tema anterior que 5 es 3 y 2 • Después ellos mismos encuentran obligados por la estructura de la situación problemática que 3 y 2 hacen 5
Punto de partida • Colección y la acción va en el sentido de : • Percibir sus partes y • SUSTRAER una de ella.
Esta se plantea a los alumnos después de haber entendido la suma .
Preguntas • Ya no es ¿Cuántos son? • ¿Cuántos quedan?
El carácter inverso de la resta respecto a la suma se identifica en: • que a la suma se le asocia con la acción de REUNIR • En la resta va en sentido de percibir sus partes y SUSTRAER una de ellas.
Desde el 1er. Grado se inicia la construcción del modelo de la recta numérica.
Se debe tener en claro que en esta etapa se están construyendo los números naturales, los cuales son una parte de los números reales.
HACIA EL LOGARITMO DE LA SUMA
La Teoría del Aprendizaje Significativo Postula que la experiencia y el conocimiento previo de los alumnos Son elementos principales de la practica educativa
Contestar la pregunta: ¿Cuántos hay en total? Inicia con un problema sencillo No representa ninguna dificultad para los alumnos EL PLANTEAMIENTO Saben contar grupos mas numerosos
La importancia de contar grupos numerosos Se asume que los alumnos poseen los conocimientos necesarios para formular la expresión matemática que se pida y resolverla Los alumnos saben contar grupos de objetos con menos de 10 centenas Sin embargo contarlos puede no ser rápido ni fácil
FORMAS DE REALIZAR EL CONTEO A partir de la manipulación de las representaciones Simbólica Gráfica De los dos números
Se dice cálculo Se aplican procedimientos que se sustentan en la estructura de los dos números Ambas darán lugar a formas de realizar el calculo para sumar dos números Su representación por bloques y espacialmente Facilita la obtención de la suma de los dos números
El logaritmo de la suma
La reagrupación de las decenas Es un paso esencial que los alumnos deben conocer y tener plena conciencia Se sustenta la generalización de la manera de realizar el cálculo Denominado algoritmo de la suma Sobre algunas de sus transformaciones
Se parte del problema de cómo calcular la suma de dos números Sin que la suma se resuelva al contar explícitamente La colocación vertical en columna según el valor posicional de los dígitos que forman los números En la base de la ubicación de los sumandos trazar una línea horizontal Sumar los dígitos de las columnas y colocar los resultados en la columna correspondiente por debajo de la línea horizontal El número que resulta del punto anterior es la suma Con base en la estructura decimal de valor posicional de los números El procedimiento requiere
Maneras de pensar el cálculo Se suman mediante el procedimiento anterior Se suman las unidades Estos resultados se colocan manteniendo el valor posicional de las columnas Se suman las decenas
Para abordar el logaritmo de la suma se usan todos los conocimientos y habilidades antes promovidas El algoritmo Permitiendo que los alumnos no asuman el algoritmo como una “receta a seguir”, sino como un procedimiento en el que se pueden entender todos los pasos, facilitando el cálculo Es la prescripción exacta sobre el cumplimiento de cierto sistema de operaciones, en un orden determinado, para la resolución de problemas de algún tipo dado.
La suma es una operación binaria, se realiza entre dos números. • No importa el orden en que se sumen los números, el resultado será el mismo. • El conjunto de los números reales, de los cuales forman parte los números naturales, junto con las operaciones de suma y multiplicación constituyen un sistema numérico de fundamental importancia.
Hemos recordado que la suma con números naturales tiene, entre otras, tres propiedades: • Cerradura. • Conmutatividad. • Asociatividad. • Si se suman dos números naturales el resultado será siempre otro número natural.
También se aborda la resta a continuación de la suma; se incluye el carácter inverso de la resta respecto a la suma a partir de responder preguntas como: • “¿cuántos quedan?”, en lugar de • “¿cuántos son?”, que está asociada a la suma. • se “separa” el sustraendo configurando la acción de quitar.
EL ALGORITMO DE LA RESTA. Esta transformación es un espacio esencial, que los alumnos deben conocer y tener plena conciencia de el. Este aspecto que el maestro no debe subestimar. Transformación que se sustenta en la generalización de realizar el calculo de la resta.
El algoritmo consiste de los siguientes pasos: 1.Colocar verticales los dígitos en razón de su valor posicional. 2.Trazar una línea horizontal. 3.Calcular la diferencia entre los dígitos de cada columna. 4.Escribir los resultados en la columna correspondiente por debajo de la línea. 5.El numero que resulta es el resultado de la resta.
El algoritmo funciona: Cuando los dígitos de las unidades y las decenas del minuendo son mayores o iguales que los correspondientes en el sustraendo El algoritmo se introduce un paso mas la conversión de una decena en unidad “Como calcular 45 – 27” R= indica como manejar la conversión que se realiza y la forma de hacer el calculo
Relación entre la suma y la resta Esta representación tiene distintas características para presentar los datos en las relaciones entre ellos Son de tipo “discreto” y de tipo “continuo” En el caso de las “discretas” la cantidad de marcas representa los datos con el tipo de representación “continuo” no sucede La utilización de un modelo “continuo” para los números naturales no es nueva, se usa en la recta numérica, la presentación es totalmente precisa Sirven para expresar la situación problemática a resolver
Tiene la cualidad de expresar los datos y la relación entre ellos. Este modelo tiene cualidades que lo hacen interesante: Con un trozo de cinta se puede representar la numerosidad de grupos discretos Para diferenciar cantidades, es necesario distinguir a las cintas por sus longitudes
Esta forma de representación significa un paso hacia la abstracción Este es un modelo de representación mas potente que es el discreto