20 likes | 156 Views
ab | bc and xy | yz. x. a. Statements Reasons. z. b. c. y. IF HL. b. a. ad | d c and cb | ab, bc = ad, prove adc = cba. c. d. z. xw | w y and yz | wy, wa = ya, prove xwa = zya. w. w. y. y. a. a. x.
E N D
ab | bc and xy | yz x a Statements Reasons z b c y IF HL b a ad |dc and cb | ab, bc = ad, prove adc = cba c d z xw |wy and yz | wy, wa = ya, prove xwa = zya w w y y a a x xw |wy and yz | wy, a is the midpoint of wy, prove xwa = zya z x
ac bisects db at e, ad = bc. Prove triangle ade = triangle bce a b e d c HOMEWORK --- HINT: These all use different postulates ad bisects bc at e. ab | bc , cd | bc. Prove abe = dce a a a c c c e e e b b b d e is the midpoint of ad and bc. . Prove abe = dce d ab | bc , cd |bc.. bc bisects ad at e. Prove be = ce. d