1 / 15

Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

DRM #2 - M. K ü rster , T. Herbst, E. Meyer, B. Goldman. Tom‘s title: Panoramic Interferometric Astrometr y with LINC-NIRVANA . My title: LINC-NIRVANA Design Reference Mission #2. Astrometric Follow-up of Extrasolar Planets with Radial-velocity Derived Orbits.

chandler
Download Presentation

Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman Tom‘s title:Panoramic Interferometric Astrometry with LINC-NIRVANA. My title:LINC-NIRVANA Design Reference Mission #2. Astrometric Follow-up of Extrasolar Planets with Radial-velocity Derived Orbits Goal: Determine the mass of the companion and thereby its nature: planet vs. brown dwarf vs. star Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  2. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman Team: M. Kürster - project definition and strategy, sample definition T. Herbst - project definition, instrument performance E. Meyer - pilot studies: (a) astrometric precision in MAD data (b) astrometric orbit determination with NaCo B. Goldman - astrometric reference object prediction Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  3. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Extrasolar planets discovered by RVs • Stellar RV change (few m/s) due to reflex motion • of star around star-planet barycenter • Most orbital parameters are known: P, e, To, ω, K f(m) • Missing orbital parameters:Ω, i •  only minimum companion mass •  nature of companion unknown •  employ astrometry … Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  4. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Astrometric follow-up • Astrometric determination of stellar reflex orbit • Keep RV-derived orbital parameters fixed – they have high precision • Solve for: Ω, i, αo, δo, dα/dt, dδ/dt, π(7 parameters) Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  5. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Astrometric follow-up • Minimum astrometric effect: • ± semi-minor axis angle: β = arctan(b/d) • b = a (1-e2)1/2 • Observer •  can be predicted from RV solution • and stellar distance d Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  6. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman Astrometry with LINC-NIRVANA Need high precision position measurements in 2 coordinates, Goal: 1/50 pixel precision = 0.1 mas  Ideal, but not strictly required: At every epoch observe at 2 parallactic angles roughly perpendicular to each other P = years: one night  one epoch  Point sources: employ PSF fitting etc. - do not employ image deconvolution, avoid deconvolution artefacts Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  7. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman RV-determined candidates - Astrometric signal vs. RV signal * But lower signal-to-noise  larger RV measurement error Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  8. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Target selection criteria: • Requirements: • Visibility from Mt. Graham: δ ≥ -27o, better: δ ≥ 0o • Semi-minor axis angle β ≥ 0.2 mas = 1/25 pixel • Astrometric reference objects in the FoV of 10.5“ x 10.5“ • Other considerations: • Fringe tracking star = science target • Suitable asterism for MCAO stars • (or is LINC mode sufficient = single on-axis AO guide star?) • Bright science target saturates detector even in narrow-band filter: •  solutions: just saturate and work on outer frings of the PSF • fabricate a specially masked filter Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  9. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  10. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Target selection criteria: • Requirements: • Visibility from Mt. Graham: δ ≥ -27o, better: δ ≥ 0o • Semi-minor axis angle β ≥ 0.2 mas = 1/25 pixel • Astrometric reference objects in the FoV of 10.5“ x 10.5“ • Status April 2008: • Of ~235 RV-discovered planetary systems • 16 fulfill δ ≥ 0o and β ≥ 0.2 mas • 10 fulfill 0o ≥ δ ≥ -27o and β ≥ 0.2 mas • Astrometric reference objects in the FoV ? Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  11. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman Target list: Expected number of stars in FoV with K<21.5 or J<23 predicted from Besançon (2000) models of the galaxy Depending on employed model, 1 - 2 extragalactic objects can be added Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  12. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman The best candidates: HR 7670 = HD 190360 GJ 4052 = HD 168443 λ = 67o, β = -1o λ = 21o, β = +3o MCAO reference stars: outer circle 6´(GWS), inner circle 2´(MHWS) Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  13. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Work in progress: • Detector saturation limit as a function of • (a) stellar K-magnitude • (b) science filter • (c) detector integration time (DIT) • (2)Exposure times for an astrometric precision of 1/50 pixel as a function of • (a) K-magnitude of astrometric reference star • (b) science filter • (3)Devise strategies against target saturation, e.g. • (a) keep DIT short and • use a narrow band filter (faint targets) • (b) just saturate and work on PSF wings (medium bright) • (c) use a filter with an attenuating mask (bright targets) - Min. DIT = 1.4 s - Filter: narrow-K‘ (1/20 throughput) Saturation limit: J = 8.6, K = 6.6  1 star in target list Astrometric precision in 1h: J = 23: ~0.07mas K = 21.5: ~0.12mas Plus: unknown systematics Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  14. Any questions? - Feel free to ask! DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman • Pilot studies – PhD thesis E. Meyer • Astrometric precision in MAD layer-oriented MCAO data: • Thanks to • R. Ragazzoni, • C. Arcidiacono • Globular cluster • NGC 6388 • 5 MCAO stars: • V=13.6-14.5 • Strehl in 1‘x1‘ FoV: • 0.160-0.205 L-N FoV:: Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

  15. DRM #2 - M. Kürster, T. Herbst, E. Meyer, B. Goldman Pilot studies – PhD thesis E. Meyer (b) Astrometric orbit determination with NaCo : Chance encounter of the M dwarf-Brown dwarf system GJ 1046 (Kürster et al. 2008) with a background star separated by 29“ βmin = 1.85 mas P = 169 d mmin = 27 MJup  Poster outside Second generation science with the LBT, Ringberg, 2008-07-15, M. Kürster

More Related