420 likes | 576 Views
Using Archived ITS Data to Automatically Identify Freeway Bottlenecks in Portland, Oregon. Robert L. Bertini, Rafael J. Fernández-Moctezuma, Jerzy Wieczorek , Huan Li, Portland State University 15th World Congress on ITS New York City, NY November 17, 2008. PORTAL database.
E N D
Using Archived ITS Data to Automatically Identify Freeway Bottlenecks in Portland, Oregon Robert L. Bertini, Rafael J. Fernández-Moctezuma,Jerzy Wieczorek, Huan Li, Portland State University 15th World Congress on ITS New York City, NY November 17, 2008
PORTAL database Loop Detector Data 20 s count, lane occupancy, speed from 500 detectors (1.2 mi spacing) Bus Data 1 year stop level data 140,000,000 rows Incident Data 140,000 since 1999 Data Archive Days Since July 2004 About 300 GB 4.2 Million Detector Intervals VMS Data 19 VMS since 1999 Weather Data
Objectives • How can we automate bottleneck detection? • How can we analyze the resulting detected bottlenecks?
What is a Bottleneck? Queueing upstream Freely-flowing downstream Temporal and spatial variation Bottleneck Unqueued Queued Detectors
Why study bottlenecks? • Find and rank recurrent bottlenecks(via data archive) Planners know where to focus congestion-reduction efforts • Detect bottlenecks in real time Improve incident detection andtravel time predictions
Research objectives • Refine an algorithm to systematically detect freeway bottlenecks, and quantify and visualize their impacts • Implement this tool in PORTAL, our continuously-updated transportation data archive
Reading a contour plot InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288
Reading a contour plot InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288
Reading a contour plot InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288
Contour plots in real time InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 ?
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Mockup of desired tool
Data • I-5 Northbound corridor has best loop detector coverage: 23 detectors over 24 miles, giving 1.1 mi average detector spacing • Chose 5 representative days for initial testing • Averaged data across all 3 lanes, removed bad detectors, and imputed missing values MP 308 MP 284
Our starting point • Based on a California field experiment • Using 5-minute aggregated data,declare a bottleneck betweentwo detectors in a given timeperiod if: • Speed difference acrossbottleneck is > 20mph, and • Upstream speed is < 40 mph • “Sustained bottlenecks” filter: • Remove outliers with too few “neighbors” • Fill in any small gaps within bottlenecks
Bottleneck detection results • Optimized parameter values for our chosen Portland freeway corridor • Validated this method on Oregon data as a good start: • It successfully finds 75% of bottlenecks • Only 20% of detections are false alarms
Bottleneck analysis tools • Find entire congested area upstream of the bottleneck: • estimate queue propagation speed • calculate costs of delay, emissions, etc • Process historical data and find prior probabilities to improve real-time detection
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Queue propagation speeds 7.66 mph 25.8 mph 14.1 mph
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Delay (in vehicle-hrs) 26403veh-hrs 1622 veh-hrs 1569 veh-hrs
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking
Congestion Tracking: 90% Of Days InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288
Congestion Tracking: 75% InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288
Congestion Tracking: 50% InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Congestion tracking: rarest 10%
InterstatebridgeMP 308 I-405MP 304 I-84MP 302 I-405MP 300 OR-217MP 292 I-205MP 288 Mockup of desired tool
Next steps • Set parameters for remaining corridors; implement into PORTAL; solicit feedback • Improve detection algorithm: incorporate weather conditions, occupancy/flow data, historical knowledge, etc. • Distinguish incidents from recurrent congestion; rank the latter on Portland’s freeways
Acknowledgments • Oregon Department of Transportation • Federal Highway Administration • TriMet • The City of Portland, OR • National Science Foundation • CONACYT (Mexico) • TransPort ITS Committee Visit PORTAL Online: http://portal.its.pdx.edu
Thank You! www.its.pdx.edu