440 likes | 670 Views
Progress with GaAs Pixel Detectors. K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C., Metorex, Freiburg, Glasgow, K.T.H.) MEDIPIX (CERN, Freiburg, Glasgow, Pisa)
E N D
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C., Metorex, Freiburg, Glasgow, K.T.H.) MEDIPIX (CERN, Freiburg, Glasgow, Pisa) IMPACT (B.N.F.L., E.E.V., Oxford Instr., R.A.L., Glasgow, Imperial College, Leicester, UMIST) NSS Toronto 11/11/’98 K.M.Smith
Imaging • Requirements • Good 2-dimensional resolution(< 100 µm) • Linear dynamic range for low contrast (< 3%) • Lower dose to Patient/Sample in medical applications • Image processing capability (digital image) Readout ElectronicsDetector - Large dynamic range - 2-dimensional geometry (Pixel) - Single photon counting - High conversion efficiency for g - Low noise energies in the range 5 - 100 keV - Digital output - Good charge collection K.M.Smith
Why Single Photon Counting? • Linear and extendable dynamic range • Energy threshold 1) Compton suppression 2) Large signal-to-noise ratio 3) Insensitive to leakage current • Local threshold tuning ( for each pixel): - can also be used for gain equalisation • Asynchronous counting Minimum dead time K.M.Smith
Photon Counting DevicesMonolithic Pixel Detectors • Material budget (H.E.P.) • fabrication • cost • material choices • efficiency • application specific K.M.Smith
Photon counting devicesHybrid Pixel Sensors • separation of detector - r/o • material choice • efficiency • dynamic range • smart pixels • cost • spatial resolution • bump bonding K.M.Smith
Hybrid Pixel Detectors K.M.Smith
Detection Modes Integration spatial resolution cheap experience dynamic range detection efficiency r/o speed cost (if custom made) charge integration Photon Counting individual particle counting choice of active media detection-r/o separated efficiency dynamic range “smart” pixels spatial resolution bump bonding cost K.M.Smith
Pixel detectors Ω3 ROIC (CERN) • Matrix of 128 rows and 16 columns • Row pitch (depth) = 50 mm • Column pitch (width) = 500 mm • total area = 8 x 6.35 mm2 • ENC ~ 100 e- rms • Individual pixel addressing (mask + test) • Globally adjustable threshold K.M.Smith
Ω3 500 m 28m 50m K.M.Smith
Image - Washer (Al) full matrix single column 500m step GaAs - 3 single column 50 m step K.M.Smith
Image Quality (II) Flood image K.M.Smith
MTF comparison K.M.Smith
X-Ray Diffraction 2d sin = n Powder Method 2 X-ray beam d d sin detector Powder sample detector Bragg’s law K.M.Smith
Silicon Powder (XRD) K.M.Smith
Si-XRD (Resolution) K.M.Smith
Potassium Niobate (XRD) K.M.Smith
Potassium Niobate (XRD) K.M.Smith
Potassium Niobate K.M.Smith
MEDIPIX • A true single photon counting readout chip • 64 x 64 pixel matrix • pixel dim. 170 x 170 m2 • Sensitive area 1 cm2 • Individually adjust threshold • 15-bit counter • Frame r/o 384 s at 10MHz K.M.Smith
Image - Objects (Pb) GaAs detector Thickness 600m K.M.Smith
Read-out Electronics Photon Counting Chip (PCC): based on ideas developed by the RD19 collaboration (CERN) • SACMOS 1mm FASELEC Technology • Matrix of 64 x 64 Pixels • Pixel size 170 mm x 170 mm • 1.2 cm2 sensitive area • 1.7 cm2 total area • 1.6 M transistors K.M.Smith
Pixel Design • Charge sensitive amplifier with leakage current compensation • Discriminator with globally settable threshold • 3-bit local threshold adjustment • Individual pixel test and mask modes • Counting controlled by shutter signal • 15-bit pseudo-random counter • 16-bit I/O Bus • Readout frequency: max. 10 MHz • Readout time: 384ms K.M.Smith
Performance of readout K.M.Smith
Detector performance Interesting energy range for medicine 10 - 100 keV [NIST Physical Reference Data] K.M.Smith
Detector design • Material: GaAs, S.I., 200 mm thick • 64 x 64 pixel matrix • square pixels of 170 x 170 mm2 • 1.2 cm2 sensitive area K.M.Smith
Electrical performance of system System = detector flip-chip bonded to readout chip Bonded detector settings: • min. mean threshold: ~2000 e- • trimmed threshold rms: ~125 e- • noise: ~200 e- (Note: a photon of 20 keV produces about 4700 e- in GaAs) K.M.Smith
Measurement of contrast ratio Object | n - n’| n Detector n’ n | n - n’| n Incident photons Signal Contrast Ratio: SCR = Signal to Noise: SNR= Distinguishing low contrast objects means: • Earlier recognition of tumours • Reduction of dose to patient K.M.Smith
Results of Contrast Ratio Measurements Comparison of Experimental and Measured Contrast Ratios: Objects with Contrast Ratio of 1.9% can be Identified K.M.Smith
Summary and Conclusions • Successful bump-bonding of 64 x 64 pixel array to ROIC • Measured threshold of ~2000 e- with ~125 e- rms • Images of a variety of objects illuminated with 241Am- and 109Cd-sources • Correctly identified objects of low contrast (1.9 %) • The system enables the evaluation of the potential and limitations of the photon counting method K.M.Smith
Image correction method Gain map: detector X2:3 K.M.Smith
Image correction before after K.M.Smith
Hybridized GaAs pixel detector Sens-A-Ray Si-CCD K.M.Smith
Source Measurements: 241Am (g-photons of 60 keV) Steel locking nut; Steel screw 300 - 500 mm thick 6 mm long; 1mm slot K.M.Smith
Pixelcell Layout Photo 170 mm K.M.Smith
First Measurement of an Organic Sample with 109Cd source g Fish Tail irradiation K.M.Smith
Measurements with sources: 109Cd (photons of 22 and 25 keV) Tungsten wire, 500 mm 300 mm thick copper mask, 300 mm K.M.Smith
Contrast Measurements K.M.Smith
Electrical performance K.M.Smith
Source Measurements: 241Am (g-photons of 60 keV) Steel screw Steel locking nut; 6 mm long; 1mm slot 300 - 500 mm thick K.M.Smith
Pixel cell K.M.Smith
Hybrid Pixel Detector K.M.Smith
Preliminary evaluation of MEDIPIX read-out chip on Glasgow LEC GaAs pixel detector K.M.Smith