1 / 113

Chapter 2

Chapter 2. Array. Overview. ADT of Array Sequence List ADT of Polynomial Special Array and Sparse Array String STL vector , deque , list and string. What is an array?. Array :

charla
Download Presentation

Chapter 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 2 Array Software College Northeastern University

  2. Overview • ADT of Array • Sequence List • ADT of Polynomial • Special Array and Sparse Array • String • STL vector, deque,list andstring Software College Northeastern University

  3. What is an array? Array: The basic mechanism for storing a collection of identically-typed objects. √ × Software College Northeastern University

  4. The character of array • it is linear structure • Each element except the first has a unique predecessor, and each element except the last has a unique successor. • Given the size of the element and the start address, we can know the address of any element Software College Northeastern University

  5. Definition and initialization • Two way to Define an array: static array,dynamic array • Example #include <iostream.h> class szcl { int e; public: szcl ( ) { e = 0; } szcl ( int value ) { e = value; } int get_value ( ) { return e; } } Software College Northeastern University

  6. Static array main( ) { szcl a1[3] = { 3, 5, 7 }, *elem; for ( inti = 0;i < 3;i++ ) cout << a1[i].get_value ( ) << “\n”; //print the static array elem = new szcl[3]; for ( inti = 0;i < 3;i++ ) { cout << elem->get_value( ) << “\n”; //print the dynamic array elem++; } return 0; } Dynamic array Software College Northeastern University

  7. Primitive arrays can’t satisfy us • We expect a copy of an array to copy the entire collection • We expect an array to know how many objects are in its collection • We expect that when allocated arrays are no longer needed, the memory that these arrays consumes is automatically reclaimed ....... How to do ? Software College Northeastern University

  8. ADT of Array —— Class Declaration #include <iostream.h> #include <stdlib.h> template <class Type> class Array { Type*elements; int ArraySize; //current size void getArray ( ); // dynamic allocate memory for array public: Array(int Size=DefaultSize ); Array(constArray<Type>& x ); Software College Northeastern University

  9. ~Array( ){ delete [ ]elements;} Array<Type> & operator =//copy array ( constArray<Type>& A ); Type& operator [ ] ( int i ); //get the ith element Type* operator *( )const //* operator { returnelements; } int Length ( )const //get the length { return ArraySize; } void ReSize( int sz ); //resize the array } Software College Northeastern University

  10. The interfaces of array class template <class Type> voidArray<Type>::getArray ( ){ //private function, create the space to store the elements elements = new Type[ArraySize]; if ( elements == 0 ) { ArraySize = 0; cerr << "Memory Allocation Error" << endl; return; } Software College Northeastern University

  11. template <class Type> Array<Type>::Array ( int sz ){ //constructor if ( sz <= 0 ) { ArraySize = 0; cerr << “非法数组大小”<<endl; return; } ArraySize = sz; getArray ( ); } Software College Northeastern University

  12. template <class Type> Array<Type>:: Array ( const Array<Type> & x ){ //copy constructor int n = ArraySize = x.ArraySize; elements = new Type[n]; if ( elements == 0 ) { ArraySize = 0; cerr<< “存储分配错”<< endl; return; } Type *srcptr = x.elements; Type*destptr = elements; while( n-- ) * destptr++ = * srcptr++; } Software College Northeastern University

  13. template <class Type> Type & Array<Type>::operator [ ] ( int i ){ //get the element by index if ( i < 0|| i > ArraySize-1 ) { cerr << “数组下标超界”<<endl; return NULL; return element[i]; } Pos = Position[i -1] + Number[i -1] Software College Northeastern University

  14. template <class Type> void Array<Type>::Resize (int sz) { if ( sz >= 0 && sz != ArraySize ) { Type * newarray = new Type[sz]; if ( newarray == 0 ) { cerr << “存储分配错”<< endl; return; } int n = ( sz <= ArraySize ) ? sz : ArraySize; Type *srcptr = elements; Type *destptr = newarray; while ( n--) * destptr++ = * srcptr++; delete [ ]elements; elements = newarray; ArraySize = sz; } } Software College Northeastern University

  15. Two-dimensional array three-dimensional array column index i page index i rowindexj row indexj columnindexk Software College Northeastern University

  16. One-dimensional array LOC ( i ) = LOC ( i -1 ) + l =α+ i*l Software College Northeastern University

  17. Two-dimensional array Row major order: LOC ( i, j ) = a + ( i * m + j ) * l Column major order:LOC ( i, j ) = a + ( j * n + i ) * l Software College Northeastern University

  18. Three-dimensional array • dimension values are m1, m2, m3 • the address of the element associated with index i, j, k LOC ( i, j, k ) = a + ( i *m2*m3+j*m3+ k )* l Software College Northeastern University

  19. n-dimensional array • dimension values are m1, m2, m3, …, mn • the address of the element associated with index i1, i2, i3, …, in LOC ( i1, i2, …, in ) = a + ( i1*m2*m3*…*mn + i2*m3*m4*…*mn+ …… + in-1*mn + in ) * l Software College Northeastern University

  20. Test • We store a 5×5 matrix A into an array B(index starts from 0) with column major order, the index of element a[3][2] in B is . • ( )For the following program fragment the running time(Big-Oh) is . • i = 0; • s = 0; • while( i < n ) • { i++; • s = s + i;} • a. O(n) b. O(n2) c. O(n1/2) d. O(n3) S Software College Northeastern University

  21. a0 a1 ai-1 ai ai+1 an-1 Sequence list Using consecutive set of memory locations (Array) Address of element ai Loc(ai ) = Loc( a0 )+ i × L · Random-access storage Sequential mapping Software College Northeastern University

  22. Implementation:Sequence list Sequence list :Dynamic array template <class Type> classSeqList { Type *data; int MaxSize; intlast; //index of the last element public: SeqList ( int MaxSize = defaultSize ); ~SeqList ( ){ delete [ ] data; } int Length ( )const{ returnlast+1;} int Find( Type& x ) const; Software College Northeastern University

  23. Interface of sequence list int IsIn ( Type& x ); intInsert( Type & x, inti ); intRemove( Type& x ); int Next( Type& x ) ; int Prior( Type& x ) ; int IsEmpty ( ){ returnlast ==-1;} intIsFull ( ){ return last == MaxSize-1;} Type Get(int i ) { returni < 0|| i > last?NULL:data[i]; } } Software College Northeastern University

  24. Implementation of sequence list template <class Type> SeqList<Type> :: SeqList ( int sz ) { //constructor if ( sz > 0 ){ MaxSize = sz; last = -1; data = new Type[MaxSize]; if ( data == NULL ) { MaxSize = 0; last = -1; return; } } } Software College Northeastern University

  25. template <class Type> intSeqList<Type>::Find ( Type& x ) const { //sequence find x from begin to end int i = 0; while( i <= last && data [i]!= x ) i++; if ( i > last ) return-1; //failure else return i; //success } Software College Northeastern University

  26. template <class Type> intSeqList<Type>::IsIn ( Type& x ) { //Is x in the List? int i = 0, found = 0 while( i <= last &&! found ) if( data[i] ! =x )i++; elsefound = 1; //success return found; } Software College Northeastern University

  27. Diagram of finding x = 48 x = 50 Software College Northeastern University

  28. Success: • Average Comparing Number • Failure: n Software College Northeastern University

  29. Insertion 如何移动? for (int j = i; j <=last; j++) data[j+1] = data[j ]; How to move? for (int j = last+1; j >i; j-- ) data[j] = data[j - 1]; Software College Northeastern University

  30. template <class Type> intSeqList<Type>::Insert (Type& x,inti ){ //insert x into the list as the ith element if ( i < 0||i > last+1||last == MaxSize-1 ) return 0; //failure else { last++; for (int j = last; j > i; j-- ) data[j] = data[j -1]; data[i] = x; return 1; //success } } Software College Northeastern University

  31. deletion Software College Northeastern University

  32. template <class Type> intSeqList<Type>::Remove (Type& x ) { //delete x from the list inti = Find (x); //find x if ( i >= 0) { last-- ; for ( int j = i; j <= last; j++ ) data[j] = data[j+1]; return 1; //succeed } return 0; //failure } Software College Northeastern University

  33. template <class Type> intSeqList<Type>:: Next(Type& x ) { //Gets the next element in list. inti = Find (x); //find x if ( i >= 0 && i < last) return i + 1; else return -1; //failure } template <class Type> intSeqList<Type>:: Prior(Type& x ) { //gets the predecessor inti = Find (x); //find x if ( i >= 0 && i <= last) return i - 1; else return -1; } Software College Northeastern University

  34. 顺序表用数组实现的操作的特点 • 1.通过元素的存储顺序反映线性表中 • 数据元素之间的逻辑关系; • 2.可随机存取顺序表的元素; • 3.顺序表的插入、删除操作要通过移动元素实现,效率较低; • 4.元素较少时存储空间的利用率较低。 Software College Northeastern University

  35. Application:sequence list Example2-1:using sequence list to resolve the union of two set A and B A= A∪ B idea: (1)use type SqList to store set LA and LB (2)get element from LB not existent in LA,add them to LA B A Software College Northeastern University

  36. Application:sequence list template <class Type> voidUnion ( SeqList<Type>& LA, SeqList<Type> LB ) { int n = LA.Length ( ); int m = LB.Length ( ); for ( int i = 1; i <= m; i++ ) { Type x = LB.Get(i); //在LB中取一元素 int k = LA.Find (x); //在LA中搜索它 if ( k == -1 ) //若未找到插入它 { LA.Insert (n+1, x); n++; } } } Time complexity:O(ListLength(La)*ListLength(Lb)) 4 3 B A 2 1 Software College Northeastern University

  37. Application:sequence list Example2-2:using sequence list to compute A-B idea: (1)use type SqList to store ordered list (2) Delete the element which isn’t in other list through comparing B A Software College Northeastern University

  38. Application:sequence list template <class Type> void Intersection ( SeqList<Type>& LA, SeqList<Type>& LB ) { int n = LA.Length ( ); int m = LB.Length ( ); int i = 0; while ( i < n ) { Type x = LA.Get (i); int k = LB.Find (x); if ( k == -1 ) { LA.Remove (x); n--; } else i++; } } Software College Northeastern University

  39. ADT of Polynomial P(x) = p0 + p1 x + p2 x2 + … + pn xn Q(x) = q0 + q1 x + q2 x2+ … + qm xm Addition of two polynomials ,suppose m<n R(x)=(p0+q0)+(p1+q1)x+…+(pn+qm)xm+pm+1 xm+ … +pn xn P = (p0, p1, p2 , …pn) Q = (q0, q1, q2, …qm) R = (p0+q0, p1+q1, …, pm+qm, pm+1, …, pn ) Software College Northeastern University

  40. Polynomial ADT class Polynomial{ public: Polynomial ( ); int operator !( ); //if *thisis zero , return 1. else return 0 float Coef ( int e); //return coefficient of the item with e exponent intLeadExp ( ); //return the max exponent PolynomialAdd (Polynomialpoly); PolynomialMult (Polynomial poly); float Eval ( floatx); } Software College Northeastern University

  41. Physical representation First :private: (static int degree; array)float coef [maxDegree+1]; Pn(x): pl.degree = n pl.coef[i] = ai, 0 in Software College Northeastern University

  42. Second:private: (dynamicintdegree; Array )float * coef; Polynomial::Polynomial (intsz) { degree = sz; coef = new float [degree + 1]; } Pn(x): pl.degree = n pl.coef[i] = ai, 0 in Software College Northeastern University

  43. Some polynomial only have few nonzero coefficents : P101(x) = 3 + 5x50 - 14x101 pl.degree = 101 pl.coef = new float[102] Method: Only store the nonzero item Software College Northeastern University

  44. 第三种: classPolynomial; class term {//多项式的项定义 friend Polynomial; private: float coef; //系数int exp; //指数 }; Software College Northeastern University

  45. class Polynomial { public: …… private: static term termArray[MaxTerms]; static int free; //current address of free space // termPolynomial::termArray[MaxTerms]; // int Polynomial::free = 0; int start, finish; } Software College Northeastern University

  46. A(x) = 2.0x1000+1.8 B(x) = 1.2 + 51.3x50 + 3.7x101 store two polynomials in termArray Software College Northeastern University

  47. Add two polynomials • 结果多项式另存 • 扫描两个相加多项式,若都未检测完: • 若当前被检测项指数相等,系数相加。 若未变成 0,则将结果加到结果多项式。 • 若当前被检测项指数不等,将指数小者加到结果多项式。 • 若有一个多项式已检测完,将另一个多项式剩余部分复制到结果多项式。 Software College Northeastern University

  48. Polynomial Polynomial::operator+(Polynomial B) { Polynomial C; inta = start;intb = B.start;C.start = free; float c; // coefficient of result polynomial while ( a <= finish && b <= B.finish ) switch( compare ( termArray[a].exp, termArray[b].exp) ) {//compare exponents case ‘=’ : //with the same exponents c = termArray[a].coef + //add two exponents termArray[b].coef; if ( c ) NewTerm ( c, termArray[a].exp ); a++; b++;break; Software College Northeastern University

  49. case ‘>’ : NewTerm ( termArray[b].coef, termArray[b].exp ); b++;break; case '<': NewTerm ( termArray[a].coef, termArray[a].exp ); a++; } for ( ; a <= finish; a++ ) NewTerm ( termArray[a].coef, termArray[a].exp ); Software College Northeastern University

  50. for ( ; b <= B.finish; b++ ) NewTerm ( termArray[b].coef, termArray[b].exp ); C.finish = free-1; returnC; } Software College Northeastern University

More Related