1 / 18

String Barcoding

Implementing a novel method using string barcoding for rapid virus identification, reducing complexity through suffix trees and ILP formulation. Achieve efficient virus signatures for enhanced detection.

charlow
Download Presentation

String Barcoding

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. String Barcoding Uncovering Optimal Virus Signatures Sam Rash, Dan Gusfield University of California, Davis.

  2. Motivation • Need for rapid virus detection • Given • unknown virus • database known viruses • Problem • identify unknown virus quickly • Ideal solution • have sequence of • viruses in database • unknown virus • Solution • use BLAST (or any sequence similarity program/algorithm)

  3. Motivation • Real World • only have sequence for pathogens in database • not possible to quickly sequence an unknown virus • can test for presence small (<= 50 bp) strings in unknown virus • substring tests • Another Idea • String Barcoding • use substring tests to uniquely identify each virus in the database • acquire unique barcode for each virus in database

  4. Similar Work • Borneman et al, 2001 • Work similar to String Barcoding • Focused on bacterial size data • used a different approach tailored to their needs

  5. Problem Definition • Formal Definition • given • set of strings S • goal • find set of strings S’, the testing set • wlog, for each s1,s2in S, there exists at least one u in S’ where u is a substring of only s1 • u is a signature substring • minimize |S’| • result • barcode for each element on S

  6. Problem Complexity • Complexity • unknown if NP-hard when size of any uin S’ is unbounded • Max-Length String Barcoding • additional parameter k, a maximum length of any u in S’ • this variant is NP-Hard • reduction from Minimum Testing Set (Garey, Johnson, 1979) • means all real world uses have to deal with NP-hard result

  7. Implementation • Basic Idea: Formulate problem as an ILP • Enumerate some “useful” set of substrings from S • variable in ILP for each substring • Constraint for each pair of strings in S • means that at least one substring will be chosen to distinguish each pair • Objective Function • Minimize sum of variables in ILP

  8. Implementation • Key point: complexity of ILP primarily a function of the number of variables • reducing number of candidate substring tests reduces the number of variables in ILP • how to reduce? • Key to our method: suffix trees • finds minimum cardinality set of “useful” substrings for use as candidate signature substrings

  9. Implementation: Suffix Trees • Key Properties of Suffix Tree build for set of strings S • tree with character sequences labeling edges • nodes labeled with a subset of original string IDs • every substring of original input set appears as a root-edge walk exactly once • root-node walk is considered root-edge walk into node’s in-edge from parent

  10. c g a c a g t t a g t t c c g a g t t Implementation: Suffix Trees • root-edge walk • Creates string • appears in exactly the strings that label the node at which it ends • 2 root-edge walks ending onthe same edge • Both strings created by the walk occur in exactly the same set of original strings • Can use ether string example - a root edge walk

  11. Implementation: Solving • If two substrings occur in exactly the same set of original strings, only one need be considered • Use strings from suffix tree for each uniquely labeled node • Build ILP as discussed • Solve ILP using CPLEX • Acquire barcode and signatures for each original string • signature is the set of substring tests occurring in a string

  12. v1 - {1,2,3} v2 - {1,2,3} v3 - {3} v4 - {1} v5 - {3} v6 - {1,2} v7 - {2} v8 - {1} v9 - {1,2,3} v10 - {1,2,3} v11 - {1,2} v12 - {1} v13 - {2} v14 - {3} v15 - {1,2,3} v16 - {2} v17 - {2} v18 - {1,3} v19 - {1} v20 - {3} v21 - {1,2,3} v22 - {3} v23 - {2} v24 - {1,2} v25 - {1} Implementation: Example • strings: 1. cagtgc 2. cagttc 3. catgga • Each node in the suffix tree has a corresponding set of string IDs below it Figure 1.1 - suffix tree for set of strings cagtgc, cagttc, and catgga Figure 1.2 - table of string labels for each node in suffix tree from figure 1.1

  13. Implementation: Example minimize V18 + V22 + V11 + V17 + V8 #objective function st V18 + V22 + V11 + V17 + V8 >= 2 #this is the theoretical minimum V18 + V17 + V8 >= 1 #constraint to cover pair 1,2 V22 + V11 + V8 >= 1 #constraint to cover pair 1,3 V18 + V22 + V11 + V17 >= 1 #constraint to cover pair 2,3 binaries #all variables are 0/1 V18 V22 V11 V17 V8 end Figure 1.3 - ILP constructed for suffix tree in figure 1.1 using no additional constraints (length, etc) Figure 1.4 - barcodes Figure 1.5 - signatures

  14. Implementation: Extensions • minimum and maximum lengths on signature substrings • acquire barcodes/signatures for only a subset of input strings (wrt to whole set) • minimum string edit distance between chosen signature substrings • redundancy • require r signature substrings to differentiate each pair • adds a higher level of confidence that signatures remain valid even with mutations

  15. Results: Summary • Works quickly on most moderately sized datasets (especially when redundancy >= 2) • dataset properties • ~50k virus genomes taken from NCBI (Genbank) • 50-150 virus genomes • average length of each genome ~1000 characters • total input size ranged from approximately 50,000 – 150,000 characters • increasing dataset size scaled approximately linearly • reach 25% gap (at most 1/3 more than optimum) in just a few minutes • reach small gap (often < 1%) in 4 hours

  16. Results: Summary • increasing redundancy greatly decreases run time and % gap at 4 hours in all cases tested Figure 2.1 - effect of redundancy on avg 25% gap Figure 2.2 - effect of redundancy on avg gap at 4 hours

  17. Conclusion • Practical sized testing sets obtained on reasonable sized input datasets • testing set consisting of 50 – 270 substring tests on input sets of ~100 genomes • works well with reactions that have high number of assays (substring tests) per reaction • GeneChip – 400 assays per reaction • Redundancy • Good concept in theory • Reduces solution space and hence computation time • GeneChip makes higher number of assays needed cost-effective

  18. Future Work • Expand to work on even larger datasets • Improve ILP solving • use other ILP approximations • Determine if unconstrained String Barcoding is NP-hard • More Applications?

More Related