1 / 6

Hydrogenation of High-vinyl Polybutadiene

Hydrogenation of High-vinyl Polybutadiene. Hydrogenation of High-vinyl Polybutadiene. Olefin Hydrogenation Catalyzed by RhCl(PPh 3 ) 3. Modeling - Not Just for Beautiful People.

chaz
Download Presentation

Hydrogenation of High-vinyl Polybutadiene

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hydrogenation of High-vinyl Polybutadiene J.S. Parent

  2. Hydrogenation of High-vinyl Polybutadiene J.S. Parent

  3. Olefin Hydrogenation Catalyzed by RhCl(PPh3)3 J.S. Parent

  4. Modeling - Not Just for Beautiful People • Using our proposed catalytic mechanism, we can derive a design equation which expresses the hydrogenation rate as a function of process conditions. • This expression can be used to test the mechanism against experimental data • Fitting the expression to the data can yield a model of the reaction for use in process design and control • We will apply the “hydride” pathway as opposed to the “olefin” pathway. 1 K1 K2 K3 2 3 5 r.d.s. k4 irreversible 4 J.S. Parent

  5. Modeling RhCl(PPh3)3 Catalyzed Olefin Hydrogenation • The rate of hydrogenation, as defined by the mechanism, is that of the rate determining step, r4: • Therefore, the reaction rate is: • However, this is not a useful design equation, given that the concentration of RhClH2(C=C)(PPh3)2 cannot be measured. • Treating the mechanism as a sequence of elementary reactions, we can express the reaction rate as: J.S. Parent

  6. Modeling RhCl(PPh3)3 Catalyzed Olefin Hydrogenation • We now have an equation that represents the reaction rate as a function of the process conditions. A simplified form is consistent with experimental data: • If the reaction is run under constant pressure and kinetic control (as opposed to mass transfer limited) we expect the rate of olefin hydrogenation to be: • where: J.S. Parent

More Related