1 / 17

题目: O( 1 D) + CO 2 = O( 3 P) + CO 2 反应机理的理论研究 (十一室 1101 组) 报告人:杨光辉

题目: O( 1 D) + CO 2 = O( 3 P) + CO 2 反应机理的理论研究 (十一室 1101 组) 报告人:杨光辉 合作导师:韩克利. 意义: • 热大气层(同温层和中间层)中, O 3 光解产生的 O( 1 D) 与大气分子 O 2 ,CO,N 2 ,CO 2 等 分子碰撞传能,是热大气层温度生高的主要原因。

cher
Download Presentation

题目: O( 1 D) + CO 2 = O( 3 P) + CO 2 反应机理的理论研究 (十一室 1101 组) 报告人:杨光辉

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 题目: O(1D) + CO2 = O(3P) + CO2 反应机理的理论研究 (十一室1101组) 报告人:杨光辉 合作导师:韩克利

  2. 意义: •热大气层(同温层和中间层)中,O3光解产生的 O(1D)与大气分子O2,CO,N2,CO2 等 分子碰撞传能,是热大气层温度生高的主要原因。 O3+hν→O(1D)+O2 (1) O(1D) + M → O(3P) + M*(υ,J) (2) • O(1D)与CO2碰撞传能,可能是地球周围产生温室效应的主要原因。

  3. 研究现状: 实验: • 1962年,首次推测中间化合物CO3的存在. •1966-1967年,证明了中间化合物CO3的存在; 具有C2v环型结构. •认为CO3的生成是这个反应能够高效发生的主要原因。 理论: • CO3的几何结构,对称性,相对稳定性。 需要解决的问题: • CO3最低T与S基态是否真的具有交叉,交叉点的几何,能量如何? •反应的最佳通道? •反应的动力学行为(反应速率常数,产物的振,转态的分布,分枝比等)?

  4. 方法: • 稳定点的几何和能量用Ab initio 的 MP2和CASSCF 方法, 采用6-311G* and 6-311++G(3df,2pd)基组。 • 最小交叉点的寻找用Ab initio 的 CASSCF(6, 8)方法,采用6-311G* 基组。 G98 program •自旋-轨道偶合用是在Breit-pauli近似下的MRCI方法, ,采用cc-pvtz基组。 Molpro96 program

  5. 结果: a. CO3的几何结构和稳定性。

  6. C2v D3h ΔE1# MP2/6-311G* -263.11174 -263.14043 18.0 MP2/6-311G++(3df,2pd) -263.27404 -263.30097 16.9 CASSCF(6,8)/6-311G* -262.50831 -262.50324 -3.2 CASSCF(6,8)mp2/6-311G* -263.21177 -263.14995 -38.8 MP4/ MP2/6-311G* -263.15019 -263.17567 15.9 MP4/ MP2/6-311G++(3df,2pd) -263.32007 -263.34288 14.3 QCISD/ MP2/6-311G* -263.10861 -263.08037 -17.2 QCISD/ MP2/6-311G++(3df,2pd) -263.26539 -263.22919 -22.7 Table1 Energies of the Single Carbon Trioxide Species with C2v and D3h Structures at Various LeversΔE2of Theory . (unit E: Hartree; ΔE: Kcal/mol) # ΔE1=E(C2v)-E(D3h)

  7. C2v D3h Cs(trans) ΔE1 ΔE2 MP2/6-311G* -263.06739 -263.06094 -262.99832 -4.0 -43.3 MP2/6-311G++(3df,2pd) -263.22389 -263.21741 -263.15449 -4.1 -43.5 CASSCF(6,8)/6-311G* -262.49972 -262.40572 -262.34517 -59.0 -96.6 CASSCF(6,8)mp2/6-311G* -263.18600 -263.11909 -263.01921 -42.7 -104.7 MP4/ MP2/6-311G* -263.11339 -263.10786 -263.04478 -3.4 -43.1 MP4/ MP2/6-311G++(3df,2pd) -263.27903 -263.27371 -263.20781 -3.3 -44.7 QCISD/ MP2/6-311G* -263.08645 -263.08152 -263.01982 -3.1 -41.8 QCISD/ MP2/6-311G++(3df,2pd) -263.24027 -263.23540 -263.13220 -3.1 -67.8 Table2 Energies of the Triplet Carbon Trioxide Species with C2v and D3h Structures at Various Levers of Theory . (unit E: Hartree; ΔE: Kcal/mol) # ΔE1=E(C2v)-E(D3h), ΔE2=E(C2v)-E(Cs)

  8. b. 可能的反应机理

  9. S0→S/T→T1→S/T→T0 S0→S/T→S1→S/T→T0 Fig4 Schematic illustration of the reaction model. The reaction starts at point S0 and leads to the exit point T0

  10. Fig5 Potential energy curves for singlet(S) and triplet(T) states calculated as a function of r(O2-C1) for the bond angle(O3-C1-O4)= 180º,120º,80º. The values are calculated at the MP2/6-311G* level. The r(C1-O3)=r(C1-O4)distance is fixed to 1.141Ǻ

  11. 自旋-轨道偶合和跃迁几率 原理:Breit-pauli近似, 只考虑单电子和双电子之间的自旋-轨道角动 量相互作用。 Landau-zener Model 计算跃迁几率: 采用MRCI波函数计算得到不同位置处的单重态和三重态之间的自旋-轨道相互作用的大小.

  12. The Spin-Orbital interaction HSO and Hopping probability P between the singlet and triplet energy surface at the crossing points correspond to several different collision angles θ (O4-C1-O2), when fixed the C-Obond length of CO2 part is 1.141Å for the O+CO2 system. (unit: Length:Ǻ, Angle: ˚ ) collision energy 20kcal/mol θ(O4-C1-O2) R(O-CO2) E State Symmetry HSO P 0* 1.596 -263.013714 (1A1,3B2) 46.0 0.0251 20 2.621 -263.025178 (1A′,3 A″) 118.9 0.0512 30 2.486 -263.027259 (1A′,3 A″) 112.0 0.0508 40 2.325 -263.029547 (1A′,3 A″) 108.9 0.0498 50 2.124 -263.029613 (1A′,3 A″) 103.4 0.0496 60 2..035 -263.036732 (1A′,3 A″) 87.6 0.0395 70 1.856 -263.064521 (1A′,3 A″) 67.8 0.0346 80 1.536 -263.087678 (1A′,3 A″) 52.7 0.0289 90 1.297 -263.091861 (1A1,3B2) 44.0 0.0246 **最小能量交叉点 -263.134532 (1A′,3 A″) 91.2 0.0458 Table 3 The Spin-Orbital interaction HSO and Hopping probability P between the singlet and triplet energy surface at the crossing points correspond to several different collision angles θ (O4-C1-O2), when fixed the C-Obond length of CO2 part is 1.141Å for the O+CO2 system. (unit: Length:Ǻ, Angle: ˚ ) collision energy 20kcal/mol ** The geometry of S/T showd in fig 3 * the is a line structure for CO3 system. ** The geometry of S/T showd in fig3 * the is a line structure for CO3 system.

  13. 结论: • O(1D)+CO2=O(3P)+CO2传能过程中生成的CO3应主 要以C2v的形式存在. • 传能反应机理分为两个通道: complex 通道和直接碰撞通道,二者同时发生作用。直接碰撞通道的全方位多角度的传能方式可能是这种传能高效的根本原因。 文章正在修改中 关于势能面的拟合和动力学的计算工作正在进行中。

  14. 致 谢 感谢韩克利研究员的指导与帮助! 感谢所领导和人教处的领导和老师给予我们博士后的关怀与帮助! 感谢1101组的全体同志的通力合作!

More Related