1 / 17

AMDA-TOPCAT use case

AMDA-TOPCAT use case. Magnetospheric regions automatic identification V. Génot – October 2012 – V2 vincent.genot@irap.omp.eu Special thanks to the CDPP team, M. Taylor (TOPCAT) & K. Meziane. Science use case. Based on Jelinek et al., JGR 2012 (paper1) Uses AMDA for the analysis

cherie
Download Presentation

AMDA-TOPCAT use case

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AMDA-TOPCAT use case Magnetospheric regions automatic identification V. Génot – October 2012 – V2 vincent.genot@irap.omp.eu Special thanks to the CDPP team, M. Taylor (TOPCAT) & K. Meziane

  2. Science use case • Based on Jelinek et al., JGR 2012 (paper1) • Uses AMDA for the analysis • Uses TOPCAT for visualisations • Uses IVOA SAMP to exchange data between AMDA and TOPCAT Goal : • Reproduce two paper1’s results in a few steps • Identify solar wind / magnetosheah / magnetosphere • Identify bow shock and magnetopause • Explore AMDA/TOPCAT enhanced functionalities • AMDA conditional parameters • TOPCAT weighted density maps • Propose new research perspectives

  3. Magnetospheric region identification in Paper1 All THEMIS data 2007/03/01-2009/10/01 magnetosphere With ACE data shifted to THEMIS A position magnetosheath solar wind

  4. THEMIS A magnetospheric sampling over ~3 years 3dview.cesr.fr THEMIS A orbits from 2007/03/01 to 2009/10/01

  5. Magnetospheric regions-- only THEMIS A AMDA – TOPCAT analysis In both cases, the bin/contour represents the number of events Jelinek et al., JGR 2012

  6. Magnetospheric regions rB magnetosphere rB=10rn magnetosheath rB=4-rn solar wind = rn • rB>4-rn • rB<10rn Condition from the plot above : Magnetosheath region

  7. Bow shock and magnetopause identification AMDA – TOPCAT analysis In both case, each bin represents the probability (<1) for this location to be in the magnetosheath In TOPCAT this is automatically computed from the flag_msh values Jelinek et al., JGR 2012

  8. Step by step AMDA–TOPCAT analysis Magnetospheric region identification • define rB and rn in AMDA (create new parameters, see slide for exact definition) • time delay between ACE and THEMIS A is taken constant • for instance : shift(param,4000) shifts ACE data from 4000s forward • here : param=BACE or nACE • a better approach would use (see plot) : T=|XACE-XTHEMIS_A|/VSW • a much better approach would use an iterative algorithm to compute T • for instance see http://cdpp-amda.cesr.fr/DDHTML/HELP/delay.html • launch TOPCAT ; it automatically opens a SAMP hub • in AMDA : click the « interoperability » and open a SAMP connection • download rB and rn on 2007/03/01 – 2009/10/01 at 60s resolution (all in one file) • in AMDA : in the « Download Results » window choose « Send to TOPCAT » • the table is automatically loaded in TOPCAT • choose « density map » (2D histogram) : rB function of rn • adjust binning and plotting range as necessary (0-8 for rn, 0-22 for rB) • do not worry about NaN values !

  9. Step by step AMDA–TOPCAT analysis Bow shock and magnetopause identification Use of AMDA conditional parameters • define the solar wind ram pressure pSW shifted to THEMIS A • time delay may be taken as 4000s as before • pSW=1.67e-6nACEVACE^2 • produce a time table T1 when the pSW values are in a restricted band (ex: pSW<4) • define a new (conditional) parameter : flag_msh • flag_msh=1 if rB>4-rn and rB<10rn (see plot), else 0 (for solar wind and magnetosphere) • download XTHA, sqrt(YTHA^2+ZTHA^2), flag_msh at 3600 s resolution (all in one file) for the above T1 time table Transfer via SAMP (same procedure as before) • the table is loaded into TOPCAT • choose « density map » (2D histogram) : • sqrt(Y^2+Z^2) function of X weighted by flag_msh • adjust binning as necessary

  10. Parameter definition in AMDA r_n = n_i_tha/shiftT_(sw(0),4000) r_b = bs_tha(3)/shiftT_(imf(3),4000) p_sw = shiftT_(sw(0)*sw(1)*sw(1),4000)*1.67e-6 flag_msh = (n_i_tha/shiftT_(sw(0),4000)+bs_tha(3)/shiftT_(imf(3),4000) > 4.) & (bs_tha(3)/shiftT_(imf(3),4000) - 10.*n_i_tha/shiftT_(sw(0),4000) <0.) flag_msh value is either 1 (THEMIS A is in the magnetosheath) or 0

  11. Time delay between ACE and THEMIS A 3dview.cesr.fr It is computed along the XGSE direction : T=|XACE-XTHEMIS_A|/VSW

  12. Time delay T=|XACE-XTHEMIS_A|/VSW Here the delay T is almost constant (2400) so r_b is bs_tha(3)/shiftT_(imf(3),2400) r_b T=2400 r_b

  13. Time delay T=|XACE-XTHEMIS_A|/VSW Here the delay T varies much more, a « banded » delay could be adopted (not implemented here) with conditional parameters : bs_tha(3)/shiftT_(imf(3),2400) or bs_tha(3)/shiftT_(imf(3),3200) or bs_tha(3)/shiftT_(imf(3),4000) r_b r_b In AMDA a conditional parameter P is such that P=1 if P is true Ex: C=A*(T<3600)+B*(T>3600) is equal to either A or B depending on the value of T T=3200 T=4000 T=2400

  14. Perspectives • Refine analysis with smaller ram pressure domains • Extend to larger time intervals, and other S/C (all THEMIS, CLUSTER, …) • Extend to magnetosphere and solar wind region determinations • Use this procedure to deduce bow shock and magnetopause models • Tool enhancements • TOPCAT • Bin value on mouse over • Over plot of contours and user defined lines on density maps • AMDA • Delay procedure (continuous instead of constant or « banded »)

  15. Using the binning TOPCAT functionality for density map :

  16. Using the binning TOPCAT functionality for density map :

  17. Using the binning TOPCAT functionality for density map :

More Related