1 / 115

Efficient PCF shadowmap filtering

Efficient PCF shadowmap filtering. Kees van Kooten. Virtual Proteins. Aliasing. Aliasing. PCF. PCF. 40%. PCF. PCF. PCF. nearest. PCF. nearest. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0.

chestnutm
Download Presentation

Efficient PCF shadowmap filtering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Efficient PCF shadowmap filtering Kees van Kooten Virtual Proteins

  2. Aliasing

  3. Aliasing

  4. PCF

  5. PCF 40%

  6. PCF

  7. PCF

  8. PCF nearest

  9. PCF nearest 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0

  10. PCF bilinear 0.56 0.19 0.19 0.06

  11. PCF bilinear 0.56 0.75 0.19 0.19 0.38 0.06

  12. PCF bilinear 0.56 0.75 0.75 0.19 0.19 0.38 0.38 0.06

  13. PCF bilinear 0.56 0.75 0.75 0.75 0.75 0.19 0.75 1 1 1 1 0.25 0.75 1 1 1 1 0.25 0.75 1 1 1 1 0.25 0.75 1 1 1 1 0.25 0.19 0.25 0.25 0.25 0.25 0.06

  14. PCF bilinear

  15. 0.56 0.19 0.56 0.19 0.56 0.19 0.19 0.06 0.19 0.06 0.19 0.06 0.56 0.19 0.56 0.19 0.56 0.19 0.19 0.06 0.19 0.06 0.19 0.06 0.56 0.75 0.75 0.75 0.75 0.19 0.56 0.19 0.56 0.19 0.56 0.19 0.75 1 1 1 1 0.25 0.19 0.06 0.19 0.06 0.19 0.06 0.75 1 1 1 1 0.25 0.75 1 1 1 1 0.25 0.75 1 1 1 1 0.25 0.19 0.25 0.25 0.25 0.25 0.06

  16. PCF efficient bilinear

  17. 0.75 1 1 1 1 0.25

  18. a b c d e f F1 F2 F3 F4 F5 F6 S = aF1 + bF2 + cF3 + dF4 + eF5 + fF6

  19. aF1 + bF2

  20. aF1 + bF2 lerp(F1,F2,o)

  21. aF1 + bF2 lerp(F1,F2,o) s∙lerp(F1,F2,o)

  22. (a+b) s = b o = s aF1+bF2 = s∙lerp(F1,F2,o)

  23. F1 0 F2

  24. aF1 0 bF2

  25. aF1+bF2 0

  26. aF1+bF2 0 lerp(F1,F2,o)

  27. aF1+bF2 0 s∙lerp(F1,F2,o)

  28. aF1+bF2 0 s∙(1-o)F1+ s∙oF2

  29. s = a+b 0

  30. b o = a+b 0

  31. d b f a+b c+d e+f a b c d e f F1 F2 F3 F4 F5 F6 s = (a+b)lerp(F1,F2, ) + (c+d)lerp(F1,F2, ) + (e+f)lerp(F1,F2, )

  32. ~1/2 #lookups

  33. aF1 bF2 cF3 dF4 PCF in 2D

  34. s1∙lerp(F1,F2,o1) aF1 bF2 cF3 dF4 s2∙lerp(F3,F4,o2)

  35. s1∙G1 aF1 bF2 cF3 dF4 s2∙lerp(F3,F4,o2)

  36. s1∙G1 aF1 bF2 cF3 dF4 s2∙G2

  37. s2 (s1+s2)lerp(G1,G2, ) s1+s2 = s∙lerp( G1, G2, y) s∙lerp(lerp(F1,F2,x), lerp(F3,F4,x), y)

  38. s2 (s1+s2)lerp(G1,G2, ) s1+s2 = s∙lerp(s1∙lerp(F1,F2,o1), s2∙lerp(F3,F4,o2), y) = s∙lerp(lerp(F1,F2,x), lerp(F3,F4,x), y)

  39. Doomed? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  40. Separability

More Related