1 / 37

Ron Remillard Kavli Center for Astrophysics and Space Research

INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes. Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.2.ppt. IV.2 X-ray States of Black Hole Binaries.

chet
Download Presentation

Ron Remillard Kavli Center for Astrophysics and Space Research

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. INPE Advanced Course on Compact ObjectsCourse IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.2.ppt

  2. IV.2 X-ray States of Black Hole Binaries • Thermal States and Accretion Disk Models • Defining States: Energy and Power Density Spectra • Observational Support for the Multicolor Disk Model • Applying Relativistic Disk Models • Hard State, Jets, and Microquasars • Hard State and a Steady Jet • Advection Models (ADAF and CDAF) • Synchrotron/Compton Models • Steep Power-Law of Black Hole Binaries • Summary of Properties • Link to High-Frequency QPOs • Further Considerations of BH X-ray States • Overview of X-ray State Evolution • Alternative Descriptions of X-ray States • Statistics of State Occupations

  3. X-ray States of BHBs • ThermalState: • inner accretion disk

  4. X-ray States of BHBs • ThermalState: fdisk > 75%; rms < 0.075 ; no QPOs (amax < 0.5%) • inner accretion disk

  5. Thermal State Paradigm Theory: Hot gas in thin disk + viscous dissipation Rel. MHD: Plasma + Magneto-Rotational Instability  Thermal radiation ; weakly magnetized disk modified disk blackbody blackbody energetics GR/Keplerian velocities? GX339-4 Relativistic Fe line e.g. Miller et al. 2004; but see Merloni & Fabian 2003 Kubota & Done 2004; Gierlinski & Done 2004 T(r)ar-p; p ~ 0.7 (Kubota et al 2005) (GR tweak of p=0.75)

  6. GR Applications for Thermal State Emissivity vs. Radius in the Accretion Disk Shakura & Sunyaev 1973; Makishima et al. 1986; Gierlinski et al. 1999; Zimmerman et al. 2005 Page & Thorne 1974; Zhang, Cui, & Chen 1997 Gierlinski et al. 2001; Li et al. 2005

  7. GR Applications for Thermal State Relativistic Accretion Disk: Spectral Models • e.g. kerrbb in xspec • Li et al. 2005; Davis et al. 2005 • Integrate over disk and Bn(T) • Correct for GR effects • (grav-z, Doppler, grav-focusing) • Radiative transfer (i.e. f factor)

  8. Thermal state X-ray spectra BH spin • Shafee et al. 2006; Davis, Done & Blaes 2006; McClintock et al. 2006 • Input Mx, d(kpc), disk inclination (i) • Run model trials for values of: • a (viscosity parameter) • model Comptonization (comptt, power-law, broken pow.) • fit hardening factor (h) vs. use Davis and Blaes model • Derive a* (for various trials) in range of Lx

  9. BH spin McClintock et al. 2006

  10. BH spin theory: disk should thicken near Lx ~ 0.3 LEDD McClintock et al. 2006

  11. Thermal state BH spin • Shafee et al. 2006: a* ~ 0.75 for GROJ1655-40, 4U1543-47 • Davis, Done & Blaes 2006: “moderate spin” (0.1-0.8) for XTEJ1550-564, LMC X-3 • McClintock et al. 2006: a* > 0.98 for GRS1915+105 • ------ • Systematic concerns: • Are a-disk assumptions valid? • Theory of radiative transfer (hardening factor) accurate? • ISCO is smeared by B-coupling? • (Page & Throne 1974; Agol & Krolik 2000)

  12. Hard State of BHBs 2. Hard State fdisk < 20%; G ~ 1.4 - 2.1; rms > 0.10 steady jet  

  13. Hard State of BHBs: Steady Radio Jet  2. Hard State fdisk < 20%; G ~ 1.4 - 2.1; rms > 0.10 radio : X-ray correlations: Corbel et al. 2000; Gallo et al. 2003

  14. Hard State of BHBs: Steady Radio Jet Corbel et al. 2000

  15. Hard State of BHBs: Steady Radio Jet GRS1915+105 Oct. 1 – Nov. 7, 1997 X-ray c/s H-ray HR Radio Flux Radio index 50730 50740 50750 MJD

  16. Modeling the Hard State • ADAF models: • (Advection-Dominated Accretion Flow) • transition: Keplerian to quasi-radial inflow at ~100-500 Rg • energy ‘advected’ into BH • electrons can still radiate some synchrotron and inverse Compton • controversies! Model evolution! • ADAF  CDAF (convective DAF)  more outflow XTEJ1118+480 (low NH)….truncated, cool disk (McClintock et al. 2001)

  17. Modeling the Hard State • Hybrid models: • Synchrotron/Compton • (Markoff, Nowak, & Wilms 2005) • Kalemci et al. 2005 • ADAF-fed Syn./Comp.? • (Yuan, Cui, & Narayan 2005) XTEJ1118+480 synchrotron model (Markoff et al. 2001)

  18. States of Black Hole Binaries • 3. steep power law compact corona ? • G > 2.4; rms < 0.15 ; fdisk < 80% + QPOs (or fdisk< 50%) mechanism? : inverse Compton origin? : magnetized disk ? 1 10 100 .01 .1 1 10 100 Energy (keV) Frequency (Hz) Energy spectraPower density spectra Neutron stars(atoll type) have thermal and hard States, but they never show SPL-dominated spectra

  19. Steep Power Law Gamma Ray Bright State (Grove et al. 1998) blackbody energetics SPL |

  20. Physical Models for BHB States Energy spectraPower density spectra Statephysical picture steep power law Disk + ??  thermal hard state Energy (keV) Frequency (Hz)

  21. Comparing SPL vs. Thermal States • Are they different? • Very different X-ray spectra • Extremely Different Gamma Ray Spectra • QPOs vs. none • Conclusions: • Do not combine thermal and SPL  “soft” • 3 X-ray States  3 Accretion Systems

  22. High Frequency QPOs (40-450 Hz)

  23. High Frequency QPOs source HFQPO n (Hz) GRO J1655-40 300, 450 XTE J1550-564 184, 276 GRS 1915+105 41, 67, 113, 168 XTE J1859+226 190 4U1630-472 184 + broad features (Klein-Wolt et al. 2003) XTE J1650-500 250 H1743-322 166, 242 ------- ISCO for 10 Mo BH: nf = 220 Hz (a* = 0.0)  728 Hz (a* = 0.9) Condensations at preferred radii  QPOs (Schnittman & Bertschinger 2004)

  24. High Frequency QPOs source HFQPO n (Hz) GRO J1655-40 300, 450 XTE J1550-564 184, 276 GRS 1915+105 41, 67, 113, 168 XTE J1859+226 190 4U1630-472 184 XTE J1650-500 250 H1743-322 165, 241 ------- 4 HFQPO pairs with frequencies in 3:2 ratio

  25. HFQPO Frequencies vs. BH Mass GROJ1655, XTEJ1550, and GRS1915+105 nqpo at 2no: no = 931 Hz / Mx • Same QPO mechanism and similar value of a* • Compare subclasses while model efforts continue

  26. HFQPOs Mechanisms • Diskoseismology (Wagoner 1999 ; Kato 2001)  obs. frequencies require nonlinear modes? • Resonance in Inner Disk (Abramowicz & Kluzniak 2001). • Parametric Resonance (coupling in GR frequencies for {r, q}Abramowicz et al. 2004 ; Kluzniak et al. 2004; Lee et al. 2005) • Resonance with Global Disk Warp (S. Kato 2004) • MHD Simulations and HFQPOs (Y. Kato 2005) • Torus Models (Rezzolla et al. 2003; Fragile et al. 2005) • GR ray tracing of accretion torus (Bursa et al.) • AEI + Rossby vortex (Tagger & Varniere 2006)

  27. BH Outbursts & States GRO J1655-40 1996-97 outburst Thermal x Hard (jet)g Steep Power Law D Intermediate O

  28. “Unified Model for Jets in BH Binaries” Fender, Belloni, & Gallo 2004 Remillard 2005 X-ray intensity Hard Color

  29. BH States: Overview GX339-4 Mx = 5 – 15 Mo Frequent outbursts: 1970 - 2005 + extended, faint, hard states Thermal x Hard (jet)g Steep Power Law D Intermediate O

  30. BH States: Overview GRO J1655-40 1996-97 outburst Thermal x Hard (jet)g Steep Power Law D Intermediate O

  31. BH States: Overview H1743-322 Mxunknown (ISM dust) HEAO-1 outburst: 1977 RXTE: 2003; minor outburst 2005 Thermal x Hard (jet)g Steep Power Law D Intermediate O

  32. BH States: Overview XTEJ1550-564 Mx = 9.6 + 1.2 Mo Outbursts: 1998 ; smaller, 2000; + 3 faint hard-state outbursts 2001, 2002, 2003 Thermal x Hard (jet)g Steep Power Law D Intermediate O

  33. Black Hole States: Statistics XTE J1550-564GRO J1655-40XTE J1118+480 Steep Power Law 26 15 0 Thermal 147 47 0 Low/hard 22 2 10 Intermediate 57 2 0 Timescales (days) for state (all BH Binaries) durationtransitions Steep Power Law 1-10 <1 Thermal 3-200 1-10 Low/hard 3-200 1-5 Intermediate 3-30 1-3

  34. Low Frequency QPOs (0.05-30 Hz) XTE J1550-564 1998 Sept. 23 QPO: 4 Hz, 12% rms Q ~ 9 Flux 2 Crab (~0.2 LEdd) fdisk = 0.1 QPO wave tracking  random walk in phase (Morgan et al. 1997)

  35. Low Frequency QPOs : Subtypes XTEJ1550-564 Wijnands et al. 1999 Cui et al. 1999 Remillard et al. 2002 Rodriguez et al. 2004 Casella et al. 2005 QPOs across states Jet  INT  SPL ?? diff. mechanism ?? evolution in magnetic instability Type: A B C Phase Lag: soft hard near zero n0 (Hz): ~8 ~6 0.1 – 15 a (rms %) few few 5 – 20 Q : 2 – 3 ~10 ~10 State: SPL SPL Hard/Int. HFQPO coupling yes, 3noyes, 2no no HFQPOs

  36. LFQPO Mechanisms • Periastron precession of emitting blobs in GR (Stella et al. 1999) • Frame Dragging in GR (Stella & Vietri 1998; Fragile et al. 2001) • Resonance oscillation sidebands (Horak et al. 2004) • p-mode oscillations in a truncated disk (Giannios & Spruit 2004) • Inertial-Acoustic oscillations (Milson & Taam 1997) • Global disk oscillations (Titarchuk & Osherovich 2000) • Alfven waves (C.M. Zhang et al. 2005) • Accretion-Ejection Instability in disk (magnetic spiral waves) (Tagger & Pellat 1999) • Radial oscillations in accretion shocks (Molteni et al. 1996; Chakrabarti & Manickam 2000)

  37. QPO Frequency vs. Disk Flux ? different types of magnetized disk ?

More Related