460 likes | 606 Views
XIV Advanced School on Astrophysics Topic III: Observations of the Accretion Disks of Black Holes and Neutron Stars III.2 X-ray States of Black Hole Binaries (II). Ron Remillard Kavli Institute for Astrophysics and Space Research Massachusetts Institute of Technology
E N D
XIV Advanced School on AstrophysicsTopic III: Observations of the Accretion Disks of Black Holes and Neutron StarsIII.2 X-ray States of Black Hole Binaries (II) Ron Remillard Kavli Institute for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/XIVschool_III.2.ppt
III.2 X-ray States of Black Hole Binaries (II) • Hard State (and Quiescence) • Hard State Definition • Advection and Jet Models for the Hard State • Impulsive Jets at State Transitions • Alternative Views of Black Hole X-ray States • Steep Power Law State • Summary of Properties • Concepts to Explain the Steep Power Law Spectrum • Quasi-Periodic Oscillations (QPOs) • Overviews of Black Hole States • Statistics of State Occupation and Parameter Distributions • Overviews Diagrams for States and High-Frequency QPOs
Hard State of Black Hole Binaries Hard State: disk fractionfdisk < 20%; power-law photon index, 1.4 < G < 2.1; power (0.1-10 Hz) rms > 0.10 steady jet
Modeling the Hard State • ADAF model: • (Advection-Dominated Accretion Flow) • (Narayan lecture today!) • transition: Keplerian to quasi-radial inflow at ~100-500 Rg • lower radiative efficiency • (energy advected into BH) • electrons radiate synchrotron and inverse Compton • predicts convection and outflow XTE J1118+480 (low NH)….truncated, cool disk (McClintock et al. 2001)
Modeling the Hard State • ADAF model: • Other evidence of truncated disks: • Apparent cool, large, disks in hard states of other sources (e.g. cygx1) • …. in some instability cycles of GRS1915+105 (Belloni et al. 1997) • …. and in optical continuum cutoff of quiescent state of A0620-00 • Controversy: Real or appearances?? • Profile of broad Fe line (Miller et al. 2004) “only appearances” • (in limited observations)
Hard State Correlates with Radio Emission • why a Jet? • (Fender 2006) • flat radio index • (like AGN) • polarized • jet images in Cyg X-1 (weak constraint) and in • GRS 1915+105 (highly collimated to AU scales;Dhawan et al. 2000) Corbel et al. 2000
Radio Flux vs. X-ray Flux (Hard State to Quiescence) Gallo, Fender, & Pooley 2003; elevated to “Fundamental Plane of Black Hole Activity” (with AGN and mass corrections; Merloni, Heinz, & DiMatteo 2005)
Modeling the Hard State • Jet-based models • Synchrotron • (Markoff et al. 2001) • Synchrotron/Compton • (Markoff, Nowak, & Wilms 2005) • Kalemci et al. 2005 • ADAF/JET Hybrid • (Yuan, Cui, & Narayan 2005) XTEJ1118+480 synchrotron model (Markoff et al. 2001) Compton model (Frontera et al. 2001)
Modeling the Hard State • Key Questions: • relativistic jet? • Need better measurements of collimation, energy, and outflow speed in hard state. • alternative techniques to measure Rin • Probe inner disk radius (e.g., Fe line, power continuum, e.g. Uttley et al. 2008) • explain power density spectrumbroad power peak near 1 Hz in hard state
Temporal Signature of the Hard State GX339-4: average PDS across SPL:hard transition Broad feature near 1 Hz: signature of a steady jet
Relativistic Impulsive Jets from BHBs Radio Interferometry: GRS1915+105 • Impulsive Jets • Ejecta v/c > 0.9 for several sources; jet content unknown • Seem to occur at state transitions • Correlated to giant X-ray flares (hours) near start of outbursts • X-ray jet seen year later at ISM contact, for 2 sources • Smaller impulsive jets seen with correlated X-ray flares during instability cycles in GRS1915+105
“Unified Model for Jets in Black Hole Binaries” Fender, Belloni, & Gallo 2004 X-ray intensity Hard Color Remillard 2005
States of Black Hole Binaries steep power law state: photon index G > 2.4 ; rms < 0.15 ;disk frac. fdisk < 80% + QPOs or fdisk< 50% + no QPOs Energy spectraPower density spectra 1 10 100 .01 .1 1 10 100 Energy (keV) Frequency (Hz) Neutron stars(atoll type) have soft (thermal) and hard states, but they never show SPL-dominated spectra
States of Black Hole Binaries • Origin of steep power law? • Radiation mechanism? : inverse Compton (widely assumed) • Energy source?: disk • Source of e- acceleration?: (rough concepts) • Plunging region (R < RISCO) (e.g., Titarchuk & Shrader 2002) • Effects of a fully magnetized disk (e.g., Tagger & Pellat 1999) • Mechanism for QPOs?: • “centrifugal barrier oscillations” (Chakrabarti et al. 2000) • magnetic spiral waves (Rodriguez et al. 2002)
Steep Power Law State • Heritage: • “Very High State” (only 2 sources: Miyamoto et al. 1991; 1993) • Gamma Bright State (Grove et al. 1998) blackbody energetics SPL |
Comparing SPL vs. Thermal States • Why do we need 2 soft states for BH systems? Accretion disk theory (thermal state) does not naturally provide: • Coronae of 30 keV to 1 MeV • Means to convert up to 90% of the energy into this corona • Frequent and variable QPOs at 0.1-30 Hz • Conclusions: • Do not combine thermal and SPL “soft” • 3 X-ray States 3 Accretion Systems
Preferred HFQPO Frequencies HFQPO stability Variable n ? peaks constant to few % outliers shift to 15% n correlation 3:2 ratio X-ray state Steep Power Law Luminosity span factors ~ 3-6 ------ Miller at al. 2001 Remillard et al. 2002; 2006 Homan et al. 2005; 2006
GR Coordinate Frequencies nr, q, f = f ( Mx, a*, r) (r in units of GMx/c2) nf = c3/GMx [ 2pr3/2 (1+ a*r-3/2) ]-1 nr = |nf| (1 - 6r-1 + 8a*r-3/2 - 3a*2r-2)1/2 nq = |nf| (1 - 4a*r-3/2 + 3a*2r-2)1/2 see Merloni et al. 1999 Investigated for neutron star QPOs by Stella et al. 1999
HFQPOs and General Relativity HFQPO frequency (n) and GR dynamical frequencies: Page & Thorne 1974 Merloni et al. 1999 Greene et al. 2001 Strohmayer 2001 Remillard et al. 2002 Shafee et al. 2006 • Easy to measure (sn / n ~ few percent ; nimmune to (d, Av , i )) • Long reach: X-rays penetrate ISM better than optical
High Frequency QPOs source HFQPO n (Hz) GRO J1655-40 300, 450 XTE J1550-564 184, 276 GRS 1915+105 41, 67, 113, 168 XTE J1859+226 190 4U1630-472 184 + broad features (Klein-Wolt et al. 2003) XTE J1650-500 250 H1743-322 166, 242 -------
High Frequency QPOs source HFQPO n (Hz) GRO J1655-40 300, 450 XTE J1550-564 184, 276 GRS 1915+105 41, 67, 113, 168 XTE J1859+226 190 4U1630-472 184 XTE J1650-500 250 H1743-322 165, 241 ------- 4 HFQPO pairs with frequencies in 3:2 ratio
HFQPO Frequencies vs. BH Mass GROJ1655, XTEJ1550, and GRS1915+105 nqpo at 2no: no = 931 Hz / Mx • Same QPO mechanism and similar value of a* • Compare subclasses while model efforts continue
HFQPOs Mechanisms • Diskoseismology (Wagoner 1999 ; Kato 2001) obs. frequencies require nonlinear modes? • Resonance in Inner Disk (Abramowicz & Kluzniak 2001). • Parametric Resonance (coupling in GR frequencies for {r, q}Abramowicz et al. 2004 ; Kluzniak et al. 2004; Lee et al. 2005) • Resonance with Global Disk Warp (S. Kato 2004) • MHD Simulations and HFQPOs (Y. Kato 2005)…. Disputed? • Torus Models (Rezzolla et al. 2003; Blaes, Arras, & Fragile 2006) • AEI + Rossby vortex (Tagger & Varniere 2006)
HFQPO Conclusions • HFQPOs are a compelling theme for GR-study of BHBs • QPO n ~ dynamical frequencies of disk for R < 10 Rg • Stable n (1st order) for each BH, despite large changes in Lx • 3:2 ratio for HFQPO pairs in 4 BHBs common mechanism? • Roughly n ~ 1/M for 3 cases with measured pairs plus BH mass • Primary HFQPO Spectral Properties are unexplained • tied to steep power law, when detected • No detections in BHB thermal state • 3rd harmonic is shifted to higher energy and lower Lx • HFQPOs are subtle (rms 0.5 to 6%); need a new mission with effective area >> RXTE
Black Hole States: Statistics XTE J1550-564GRO J1655-40XTE J1118+480 Steep Power Law 26 15 0 Thermal 147 47 0 Low/hard 22 2 10 Intermediate 57 2 0 Timescales (days) for state (all BH Binaries) durationtransitions Steep Power Law 1-10 <1 Thermal 3-200 1-10 Low/hard 3-200 1-5 Intermediate 3-30 1-3
BH States: Overview GRO J1655-40 1996-97 outburst Thermal x Hard (jet)g Steep Power Law D Intermediate O
BH States: Overview XTEJ1550-564 Mx = 9.6 + 1.2 Mo Outbursts: 1998 ; smaller, 2000; + 3 faint hard-state outbursts 2001, 2002, 2003 Thermal x Hard (jet)g Steep Power Law D Intermediate O
BH States: Overview GX339-4 Mx = 5 – 15 Mo Frequent outbursts: 1970 - 2005 + extended, faint, hard states Thermal x Hard (jet)g Steep Power Law D Intermediate O
BH States: Overview H1743-322 Mxunknown (ISM dust) HEAO-1 outburst: 1977 RXTE: 2003; minor outburst 2005 Thermal x Hard (jet)g Steep Power Law D Intermediate O
References Most references are in the reviews: McClintock & Remillard 2006, “Compact Stellar X-ray Sources”, eds. Lewin & van der Klis, Ch. 4, also astroph/ Remillard & McClictock 2006, ARAA, 44, 49 Additional References: Blaes, Arras, & Fragile 2006, MNRAS, 369, 1235 Kalemci et al. 2005, ApJ, 622, 508 Markoff, Nowak, & Wilms 2006, ApJ, 635, 1203 Merloni, Heinz, and DiMatteo, ApSpSci, 300, 45 Tagger & Varniere 2006, ApJ, 652, 1457 Uttley et al. 2008, COSPAR paper, in preparation.
Appendix 1: Low Frequency QPOs (0.05-30 Hz) XTE J1550-564 1998 Sept. 23 QPO: 4 Hz, 12% rms Q ~ 9 Flux 2 Crab (~0.2 LEdd) fdisk = 0.1 QPO wave tracking random walk in phase (Morgan et al. 1997)
Appendix 1: Low Frequency QPOs : Subtypes XTEJ1550-564 Wijnands et al. 1999 Cui et al. 1999 Remillard et al. 2002 Rodriguez et al. 2004 Casella et al. 2005 QPOs across states Jet INT SPL ?? diff. mechanism ?? evolution in magnetic instability Type: A B C Phase Lag: soft hard near zero n0 (Hz): ~8 ~6 0.1 – 15 a (rms %) few few 5 – 20 Q : 2 – 3 ~10 ~10 State: SPL SPL Hard/Int. HFQPO coupling yes, 3noyes, 2no no HFQPOs
Appendix 1: LFQPO Mechanisms • Periastron precession of emitting blobs in GR (Stella et al. 1999) • Frame Dragging in GR (Stella & Vietri 1998; Fragile et al. 2001) • Resonance oscillation sidebands (Horak et al. 2004) • p-mode oscillations in a truncated disk (Giannios & Spruit 2004) • Inertial-Acoustic oscillations (Milson & Taam 1997) • Global disk oscillations (Titarchuk & Osherovich 2000) • Alfven waves (C.M. Zhang et al. 2005) • Accretion-Ejection Instability in disk (magnetic spiral waves) (Tagger & Pellat 1999) • Radial oscillations in accretion shocks (Molteni et al. 1996; Chakrabarti & Manickam 2000)
Appendix 1: QPO Frequency vs. Disk Flux ? different types of magnetized disk ?
Appendix 2: HFQPO Overview: GRO J1655-40 (1996) 67 observations 10 HFQPO detections X-ray states: Thermal x Hard (jet)g Steep Power Law D Intermediate O
HFQPO Overview: GRO J1655-40 (2005) 450 observations 6 HFQPO detections X-ray states: Thermal x Hard (jet)g Steep Power Law D Intermediate O
HFQPO Overview: XTE J1550-564 (1998) 202 observations 16 HFQPO detections X-ray states: Thermal x Hard (jet)g Steep Power Law D Intermediate O
HFQPO Overview: XTE J1550-564 (2000) 63 observations 6 HFQPO detections X-ray states: Thermal x Hard (jet)g Steep Power Law D Intermediate O
HFQPO Overview: XTE J1859+226 (1999) 130 observations 5 HFQPO detections X-ray states: Thermal x Hard (jet)g Steep Power Law D Intermediate O