1 / 6

Y Dosraniad Poisson

Y Dosraniad Poisson. The Poisson Distribution.

chi
Download Presentation

Y Dosraniad Poisson

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Y Dosraniad Poisson The Poisson Distribution Mae’r Dosraniad Poisson yn cael ei ddefnyddio pan mae gennym nifer cyfartalog y troeon mae digwyddiad yn digwydd. The Poisson Distribution is used when we have the average number of times an event occurs. e.e. nifer y galwadau ffôn a dderbynnir mewn swyddfa mewn 1 diwrnod, the number of phone calls received in an office in 1 day, nifer y diffygion mewn hyd penodol o ddefnydd, the number of flaws along a specified length of material, nifer cymedrig y damweiniau a geir ar ddarn penodol o’r A470 mewn mis. the mean number of accidents along a specific stretch of the A470 in a month.

  2. Os oes gan X ddosraniad Poisson, rydym yn ysgrifennu If X has a Poisson distribution, we write X ~ Po ( μ ) μ = y cymedr μ = the mean P(X = x) = e-µ µ x x! Mae’n bosibl hefyd defnyddio tablau i ddarganfod tebygolrwydd ar gyfer dosraniad Poisson. It is also possible to use tables to find the probability for the Poisson distribution.

  3. Cymedr ac Amrywiant y Dosraniad Poisson The Mean and Variance of the Poisson Distribution Mae’r cymedr yn cael ei roi i ni fel µ mewn dosraniad Poisson, ac mae’r amrywiant yn hafal i’r cymedr bob amser. The mean is given to us as µ and the variance is always equal to the mean in a Poisson distribution. E(X) = Var(X) = µ Cofiwch mai ail-isradd yr amrywiant yw’r gwyriad safonol. Remember that the standard deviation is the square root of the variance. Gwyriad Safonol = √Var(X) = √µ Standard Deviation = √Var(X) = √µ

  4. Enghraifft - Example • Mae gan X ddosraniad Poisson, cymedr 5. Darganfyddwch • X has the Poisson distribution with mean 5. Find • P(X = 4) • P(X ≥ 6) • P(2 ≤ X ≤ 4) • P(X < 2) • gymedr ac amrywiant Y pan mae Y = 4X - 2

  5. X ~ Po ( 5 ) = 0.175 = e-µ µ x x! = e-5 54 4! a) P(X = 4) = 0.384 b) P(X ≥ 6) ( yn defnyddio’r tablau) (using tables) = P(X ≥ 2) - P(X ≥ 5) = 0.9596 – 0.5595 c) P(2 ≤ X ≤ 4) = 0.4001 d) P(X < 2) = P(X = 0) + P(X = 1) = e-5 50 + e-5 51 0!1! = 0.00674 + 0.0337 = 0.0404 = 4E(X) - 2 = 18 e) E(Y) = E(4X – 2) = 4 x 5 - 2 Var(Y) = Var(4X – 2) = 42 Var(X) =16 x 5 = 80

  6. Ymarfer/Exercise 4.6a 4.6b 4.6c Mathemateg - Ystadegaeth Uned S1 – CBAC Mathematics Statistics Unit S1 - WJEC

More Related