1 / 23

Instrumental Variables Regression (SW Chapter 12)

Instrumental Variables Regression (SW Chapter 12). Two Conditions for Valid Instrument. Estimation  1 of via 2SLS. IV Regression, Graphically. IV Regression, Algebraically. Example #1: Supply and demand. So we need a variable which shifts supply but not demand!.

chinara
Download Presentation

Instrumental Variables Regression (SW Chapter 12)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Instrumental Variables Regression (SW Chapter 12)

  2. Two Conditions for Valid Instrument

  3. Estimation 1of via 2SLS

  4. IV Regression, Graphically

  5. IV Regression, Algebraically

  6. Example #1: Supply and demand

  7. So we need a variable which shifts supply but not demand!

  8. 2SLS in the supply-demand example

  9. Example #2: Test scores and class size

  10. Properties of

  11. Example: Cigarette demand

  12. Ignoring endogeneity of ln(Price) . reg lpackpc lravgprs, r; Linear regression Number of obs = 48 F( 1, 46) = 38.86 Prob > F = 0.0000 R-squared = 0.4058 Root MSE = .18962 ------------------------------------------------------------------------------ | Robust lpackpc | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lravgprs | -1.213057 .1945897 -6.23 0.000 -1.604746 -.8213686 _cons | 10.33892 .9348204 11.06 0.000 8.457229 12.22062 ------------------------------------------------------------------------------

  13. First stage 14

  14. Second stage

  15. Combined 1st & 2nd stages YXZ . ivregress2sls lpackpc (lravgprs = rtaxso), vce(robust); Instrumental variables (2SLS) regression Number of obs = 48 Wald chi2(1) = 12.05 Prob > chi2 = 0.0005 R-squared = 0.4011 Root MSE = .18635 ------------------------------------------------------------------------------ | Robust lpackpc | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lravgprs | -1.083587 .3122035 -3.47 0.001 -1.695494 -.471679 _cons | 9.719876 1.496143 6.50 0.000 6.78749 12.65226 ------------------------------------------------------------------------------ Instrumented: lravgprs This is the endogenous X Instruments: rtaxso This is the instrumental variable • 2SLS is the estimator, as opposed to GMM or LIML • Don’t abbreviate as “ivreg”! Old “ivreg” command vs. “ivregress: http://www.ats.ucla.edu/stat/stata/seminars/stata10/endogenous.htm

  16. The General IV Regression Model

  17. Identification of

  18. The General IV Regression Model

  19. 2SLS with a 1 endogenous X

  20. Example: Demand for cigarettes

  21. Example: 1 instrument YWXZ . ivregress2slslpackpclperinc (lravgprs = rtaxso), vce(robust); Instrumental variables (2SLS) regression Number of obs = 48 Wald chi2(2) = 17.47 Prob > chi2 = 0.0002 R-squared = 0.4189 Root MSE = .18355 ------------------------------------------------------------------------------ | Robust lpackpc | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lravgprs | -1.143375 .3604804 -3.17 0.002 -1.849903 -.4368463 lperinc | .214515 .3018474 0.71 0.477 -.377095 .8061251 _cons | 9.430658 1.219401 7.73 0.000 7.040675 11.82064 ------------------------------------------------------------------------------ Instrumented: lravgprs Instruments: lperincrtaxso

  22. Example: 2 instruments YWXZ1 Z2 . ivregress2slslpackpclperinc (lravgprs = rtaxsortaxs), vce(robust); Instrumental variables (2SLS) regression Number of obs = 48 Wald chi2(2) = 34.51 Prob > chi2 = 0.0000 R-squared = 0.4294 Root MSE = .18189 ------------------------------------------------------------------------------ | Robust lpackpc | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lravgprs | -1.277424 .2416838 -5.29 0.000 -1.751115 -.8037324 lperinc | .2804045 .2458274 1.14 0.254 -.2014083 .7622174 _cons | 9.894955 .9287578 10.65 0.000 8.074623 11.71529 ------------------------------------------------------------------------------ Instrumented: lravgprs Instruments: lperincrtaxsortaxs • Differences when multiple instruments? • Normal or inferior good? Luxury good or not? • Elastic or inelastic? 23

More Related