1 / 34

A. Oyanguren (B A B AR Collaboration) LAL – Orsay (Marie Curie EIF)

A. Oyanguren (B A B AR Collaboration) LAL – Orsay (Marie Curie EIF). 3/11/05 - Physikalisches Institut, Universität Bonn. Outline.  The CKM matrix.  Semileptonic decays of b quarks.  Exclusive |V cb |.  Inclusive |V cb |.  Moment analysis.  D** states.

chogan
Download Presentation

A. Oyanguren (B A B AR Collaboration) LAL – Orsay (Marie Curie EIF)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A. Oyanguren (BABAR Collaboration) LAL – Orsay (Marie Curie EIF) 3/11/05 - Physikalisches Institut, Universität Bonn

  2. Outline The CKM matrix Semileptonic decays ofbquarks Exclusive |Vcb| Inclusive |Vcb| Moment analysis  D** states Semileptonic decays of c quarks  Calibrating Lattice-QCD Summary 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 2

  3. The CKM matrix Weak interactions of quarks in the SM: The CKM matrix: VudVusVub Vcd VcsVcb VtdVtsVtb VCKM= mq + Vqq’ 10 fundamental parameters of the Standard Model 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 3

  4. The goal: Understand the SM picture The CKM matrix In the SM: VCKMunitary 4 free parameters Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb VCKM=  Wolfenstein Parameterization l = |Vus|= 0.2227  0.0017 l 1-l2/2+O(l4) Al3(r-ih) Al2 -l+O(l5) VCKM ~ 1-l2/2+O(l4) Al3(1-r-ih)+O(l5) -Al2+O(l4) 1+O(l4) to be able to find New Physics signatures 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 4

  5. The unitary clock Vcb and Vub have akey role  determinedfrom tree level processes The Unitarity Triangle (UT) * Vud Vcd Vtd Vus Vcs Vts Vub Vcb Vtb Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb VudVub* + VcdVcb* + VtdVtb* =0 = (r,)  a g b (1,0) (0,0) The idea: Overconstrain the UT Other approaches: http://www.slac.stanford.edu/xorg/ckmfitter 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 5

  6. Instead of : Vcb We deal with : Vcb The problem The problem: quarks are confined inside hadrons... 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 6

  7. l nl q2 x X’ Vxx’ The theoretical tools sl = |Vxx’|2f (theory) Exclusive processes: Inclusive processes: 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 7

  8. Heavy Quark Effective Theory For heavy quarks  expansions in 1/mQ  flavour and spin symmetries relations between form factors QCD computations form factor calculations Lattice-QCD Difficult to put quarks of different mass in the lattice Need calibration The theoretical tools Exclusive processes: Vcd Parameterized by form factors 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 8

  9. Measurement of moments: Some inclusive observablesO  depend on the same parameters HbHc (For instance: ) : the lepton energy, the mass distribution of HC Same parameters for bcand bu transitions The theoretical tools Operator Product Expansion Inclusive processes: for heavy quarks = x Vcb f( parameters related with b quark properties inside the hadron )  kinetic energy, spin... 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 9

  10. Measuring Vcb 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 10

  11. (4S) BB Z  bb The experiments BABAR PB~ 30GeV BELLE PB~ 1GeV DELPHI CLEO (III) CLEO OPAL ALEPH PB~ 0.3GeV 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 11

  12. Normalized by HQET (mQ  ) at q2max FD*(1)=1 (1/ mQ )n and QCD corrections  FD*(1)= 0.91  0.04 Exclusive measurement of |Vcb| Known function Form factor of the B D* transition The shape parameterized with a form factor slope  2 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 12

  13. Exclusive measurement of |Vcb| D*+ - l- candidates Eur. Phys. J. C33 (2004) 213 B  D*l- D0 soft m= m(D0) -m(D0) ~ m(soft) D0  K-+ D0  K- + - + D0  K-+(0) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 13

  14. Exclusive measurement of |Vcb| World average |Vcb|=0.0413  0.0010  0.0020 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 14

  15. sl incl = B(BXcln)/B = |Vcb|2f() d|Vcb| < 1% |Vcb|  Need the same accuracy in Getting these parameters from other observables: Ex: Studying the Xchadronic mass distribution f ( ) What is Xc? Inclusive measurement of |Vcb| B = 1.568  0.009 ps B(BXcln) = (10.70 0.14)% 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 15

  16. HQET: D* 52% D 21% ? D**  27% Ground states Broad states Narrow states The hadronic system Xc 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 16

  17. D** mass distribution Exclusive reconstruction of Right sign Wrong sign ALEPH [ZP C73 (97) 601] D(*)pp contributions Right sign Found < 0.22% Wrong sign 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 17

  18. BNR= (0.23  0.35  0.44)% sNR= (5.0  7.0) (GeV/c2)-1 D** mass distribution DELPHI fit superimposed to CDF data considering B(D1,D*1 Dpp =(2015)% [PRD 71 (05) 051103] CERN-EP-PH-2005-015 Narrow states BD1= (0.56 0.10)% (constrained) BD*2= (0.30 0.08)% Broad states BD*1= (1.24  0.25  0.27)% mD*1=2445  34  10 MeV D*1= 234  74  25 MeV BD*0= (0.42  0.33 0.22)% D*0= 260  130  130 MeV (CDF normalized to the # DELPHI entries) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 18

  19. 2 3 rLS G |Vcb|from Moments Moments of the hadronic mass distribution + Moments of the lepton energy spectrum Fixing ( ~ MB*-MB ) , and using constraints on mb and mc 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 19

  20. OPE parameters from DELPHI Theo. uncertainty LEPB(BXcln) |Vcb|from Moments Phys.Lett. B556 (2003) 41 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 20

  21. |Vcb|from Moments The big success of OPE (hep-ph/0507253) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 21

  22. Something puzzeling Theoretical predictions(OPE values, sum rules, lattice QCD) B(B narrow(jq=3/2)ln) >> B(B broad (jq=1/2)ln) B(B0Xcln) - B(B0Dln) - B(B0D*ln) = (2.9  0.3)% B(B0 D**ln) = (2.7  0.7  0.2)% With narrow states only accounting for (0.86  0.13) % B(B narrowln) < B(B broad ln) Measured broad component not (only) jq=1/2? ( 0’, L>1 states?) Large 1/mc contributions in the theoretical predictions? 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 22

  23. Decays of c quarks 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 23

  24. Computations need to be confronted with experimental results Lattice-QCD d QCD computations in a space-time lattice parameters: s and quark masses a matrix elements: decay constants, form factors... Current Lattice-computers ~ teraflop = 1012 operations/sec. Difficult to put together quarks of very different mass  approximations Difficult to include dynamical quark-pairs  unquenched Impressive accurate results Ex: new result of fB = 216  22 MeV (HPQCD) affecting md  |Vtd| accuracy from 16% to 11% 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 24

  25. Using exclusive semileptonic decays of charm hadrons to measure form factors and validate Lattice QCD results Semileptonic decays of c quarks In the charm sector: Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb Vcd, VcsConstrained from measurements of the two first rows Vcd Parameterized by form factors 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 25

  26. Semileptonic decays of c quarks D K l n andD pl n decays Phys. Lett. B317 (1993) 647  High accuracy needed to measure the q2- dependence 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 26

  27. Semileptonic decays of c quarks Lattice QCD form factors (D K, D p) Fermilab + MILC, hep-ph/0408306  BES, Phys. Lett. B597 (04) 39 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 27

  28. Semileptonic decays of c quarks Charm Semileptonic Decays: Calibrate Lattice QCD results Improve results on B decays fp, fB, fB* , gB*Bp |Vub|measurement: 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 28

  29. Experimental setups (4S)@ B factories Y(3770) @ charm factories BELLE CLEO-c BES-III BABAR DD BB 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 29

  30. Experimental setups Some advantages and disavantages (4S)  cc  DD Y(3770) Large cc (~1.3 nb) Very large DD (~6 nb) Low multiplicity Very large statistics Small background Vertex separation Fragmentation (cD* = 26%) Well known En Background Still few data 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 30

  31. Experimental techniques At the Y(3770) CLEO-c Unique kinematics: pp(GeV) DE=Ebeam-ED No PID DU=Emiss-pmiss s.l. channel D  p e n CLEO-c hep-ex/0408077 D  K e n Preliminary D  p e n DU=Emiss-pmiss (GeV) Tagged D CLEO-c Events/5 Mev 10183  112 Events/1 Mev 60 pb-1 Expected resolution on q2 ~ 0.03 GeV2 MD (GeV) DU=Emiss-pmiss (GeV) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 31

  32. Experimental techniques At the (4S) bb/cc separation  event shape variables BB Continuum events: e+e- cc cc from all particles in the event En estimation  D*+ D0 + s ~ 0.35 GeV q2 = (pl+ pn)2 =(pD – pK )2 50904 evts Events/1.6 Mev data Resolution on q2 found ~ 0.05-0.25 GeV2 Events/2.7 Mev 19.5 fb-1 D  K e n Background contribution  Dm (GeV) Dm (GeV) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 32

  33. Experimental techniques Comparisons: 2006 20 fb-1 300 fb-1 6.7 fb-1 3 fb-1 ? 60 pb-1 10K 6K 1800 90K 30K 450K 0.9K 0.3K 175 9K 3K 45K * D  K form factor by FOCUSwith 6K events *Challenge: background suppression BaBar 5 times more stat. only with 20 fb-1 (Run1) 0.4 0.22 0.03 0.05-0.25 And good q2 resolution Phys.Lett. B607 (2005) 233-242 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 33

  34. Summary |Vcb| and |Vub| are key elements of the CKM matrix |Vcb|accuracy is at the 1.2% level (world average) by using inclusive decays and OPE Charm Semileptonic Decays provide a way to calibrate Lattice-QCD computations  Improve|Vub| 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 34

More Related