180 likes | 330 Views
The History of Black Hole Accretion from X-ray Stacking. Ezequiel Treister (IfA, Hawaii) Collaborators: Meg Urry, Priya Natarajan, Kevin Schawinski (Yale), Carie Cardamone (MIT), Eric Gawiser (Rutgers), Dave Sanders (IfA), Marta Volonteri (Michigan). Credit: Treister & Natarajan.
E N D
The History of Black Hole Accretion from X-ray Stacking Ezequiel Treister (IfA, Hawaii) Collaborators: Meg Urry, Priya Natarajan, Kevin Schawinski (Yale), Carie Cardamone (MIT), Eric Gawiser (Rutgers), Dave Sanders (IfA), Marta Volonteri (Michigan) Credit: Treister & Natarajan
Local Universe (z~0) Swift INTEGRAL
Log N-Log S Treister et al. 2009a
Contribution of CT AGN to the XRB Only 0.1% of the XRB comes from CT AGN in the local Universe. ~10% of the XRB due to CT AGN. XRB not useful to constrain CT AGN at z>1. Treister et al. 2009a
X-ray Undetected X-ray Detected All Sources Intermediate Redshifts (z~1-3) Mid-IR • This technique selects mostly high luminosity sources (quasars). Fiore et al. 2008, Treister et al. 2009b
Stacking of f24/fR>103 Sources Soft (0.5-2 keV) Hard (2-8 keV) • ~4 detection in each band. • fsoft=2.1x10-17erg cm-2s-1. fhard= 8x10-17erg cm-2s-1 • Sources can be detected individually in ~10 Msec. Treister et al. 2009b
Rest-Frame Stacking NH=1024cm-2 =1.9 =1.9 (reflected) Thermal kT=0.7 keV HMXBs Combination of heavily-obscured AGN and star-formation. Treister et al. 2009b
The Merger-Quasar Connection Treister et al. 2010a
Morphologies NGC 6240 Mrk 273 NGC 7674 HUDF GOODS-S GOODS-S Treister et al. 2010a
The Merger-Quasar Connection t=9623 Myrs The obscured phase represents ~30% of total accretion onto supermassive black holes Quasars outflows can get rid of most of the surrounding material Treister et al. 2010a
Lower Luminosity Obscured AGN CDF-S 4 Msec data!!! X-ray stacking of IR-selected galaxies Harder X-ray spectrum for more luminous sources -> More AGN in these samples. Treister et al. 2010b
Rest-frame Spectral Analysis Combination of thermal emission, X-ray binaries and obscured AGN • AGN Luminosities • 6x1042erg/s LIR>1011Lo • 3x1042erg/s LIR>5x1010Lo • 5x1041erg/s 5x1010>LIR (Lo)>1010 • 7x1041erg/s LIR>1010Lo Much flatter evolution -> different triggering mechanism? Treister et al. 2010b
High Redshift (z>7) Lyman Break Selection Bouwens et al. 2010
X-Ray Stacking Soft (0.5-2 keV) 4-16 keV rest-frame Hard (2-8 keV) 16-64 keV rest-frame • CDF-S 4 Msec data • 75 sources (300 Msec!!!) • No detection! • Rest frame 2-10 keV average L<4.2x1041 erg/s • BH(z>7)<1143MoMpc-3 (3) Treister et al. submitted
Observed z=0 BH MF X-ray stacked X-ray detected z>7 stacking Accreted Mass vs Redshift Treister et al. submitted
Soltan Argument. X-ray LF More CT quasars Accreted Mass vs Redshift Treister et al. submitted
Dir. Coll. Self-regulated Dir. Coll., no Self-reg. Pop III Self-regulated Pop III, no Self-reg Accreted Mass vs Redshift Treister et al. submitted
Summary • Most BH accretion up to z~3 identified in X-rays, either directly or via stacking. • Vast majority of accretion, ~70%, is obscured. • ~20% of BH accretion is Compton Thick. • X-ray background not a strong constrain for heavily-obscured accretion. • Self-regulation appears to be important for BHs at all masses. • Observations of accreting BHs cannot identify nature of BH seeds.