1 / 32

时空各向异性与 Finsler 几何

时空各向异性与 Finsler 几何. 李昕 中国科学院高能物理研究所 E-mail:lixin@ihep.ac.cn. 一 .Finsler 几何. Shiing-Shen Chern: Finsler geometry is just Riemannian geometry without the quadratic restriction 计算太复杂了 ! ( 线元的形式为四次根式 ).

christmas
Download Presentation

时空各向异性与 Finsler 几何

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 时空各向异性与Finsler几何 李昕 中国科学院高能物理研究所 E-mail:lixin@ihep.ac.cn

  2. 一.Finsler几何 Shiing-Shen Chern: Finsler geometry is just Riemannian geometry without the quadratic restriction 计算太复杂了! (线元的形式为四次根式)

  3. Finsler geometry is base on the so called Finsler structure F with the following property F(x,λy)=λF(x,y), where xM represents the position and yT_xM represent velocity, M is an n-dimensional manifold. The Finslerian metric is given as • The length in Finsler geometry is given as

  4. Geodesic equation • The inner product of two parallel transported vectors is preserved • if F is Riemannian metric, then

  5. Flag curvature (generation of section curvature )

  6. Examples of Finslerspacetime • “平坦”Finsler时空 F=F(y) • Randers时空 • Bimetric

  7. Killing equation • “平坦”Finsler时空中最大独立Killing矢量个数 N(N-1)/2+1

  8. Finsler引力 • 测地线偏离方程: • Newton引力 泊松方程 • 广义相对论 真空场方程

  9. Finsler 时空 • 真空场方程 ?

  10. 真空场方程的弱场近似解 • We suppose the metric is close to the “flat” metric • The solution of the gravitational vacuum field equation is of the form

  11. Finsler引力波 • 如果\eta_{\mu\nu}是Randers度规,则

  12. 引力波的超光速传播

  13. 牛顿近似 • 静态场、低速 • R = 0处有一引力源M

  14. Dynamical equation • 取 • MOND

  15. Finsler物理的过去 • Dark matter • Neutrino mass and Glashow’s VSR • Pioneer anomaly • GZK cutoff

  16. Now: 观测与实验 • Keck与VLT望远镜通过类星体吸收谱发现精细结构常数的偶极结构 • OPERA实验组发现muon中微子超光速? • 子弹星系团的引力中心与物质中心分离

  17. 1.精细结构常数的偶极结构

  18. 在Randers 时空下 引力红移

  19. A~10^-7, B~10^-8

  20. 2.OPERA T. Adam et al. [OPERA Collaboration], arXiv: 1109.4897. • Muon中微子的速度

  21. OPERA(red), MINOS(blue), FERMILAB(black)

  22. A. Cohen and S. Glashow, arXiv: 1109.6562 • Bremsstrahlung • Solution: Finsler spacetime?

  23. Finsler线元 • 色散关系 • 粒子运动速度

  24. A~10^-18

  25. 3.子弹星系团的引力中心与物质中心分离 观测手段 • X-ray imaging of the hot intracluster medium (ICM) • Strong and weak gravitational lensing surveys

  26. 子弹星系团 ICM气体表面密度分布(红色) 空间曲率 分布 (蓝色) 暗物质 (Dark Matter) ? 或 修改引力 (Modified Gravity) ?

  27. 子弹星系团的Σ-Map

  28. 子弹星系团的κ-Map Prefer direction?

  29. Finsler物理的未来 • Finslerian effects in QED • Finslerian black hole: solutions and thermodynamics • Anisotropy in large scale spacetime • Some applications

  30. Thank You !

More Related