1 / 47

P hysique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d)

PHYS 2356: Jour 7. P hysique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High Energy Physics, 4th edition + PDG, Review of Particle Physics , les chapitres selectionnés à http://pdg.lbl.gov

Download Presentation

P hysique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PHYS 2356: Jour 7 Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High Energy Physics, 4th edition + PDG, Review of Particle Physics, les chapitres selectionnés à http://pdg.lbl.gov + les référencessupplémentaires: Aitchison&Hey, Halzen&Martin, Ferbel(ed), Kleinknecht

  2. Plan du cours • Introduction/motivation (3.2) • Détecteurs modernes (10.2) • Collisionneurs à hautes énergies (17.2) • Systèmes des déclenchement et sélection (24.2) • Interactions e+e- (3.3) • Interactions ep (10.3) • Interactions pp (21.4) • Au-delà du modèle standard + physique des particules et cosmologie (5.5) • Cours d’exercices pratiques • … et encore une fois K. Piotrzkowski, PHYS 2356

  3. La physique aupres des collisioneurs pp K. Piotrzkowski, PHYS 2356

  4. K. Piotrzkowski, PHYS 2356

  5. K. Piotrzkowski, PHYS 2356

  6. K. Piotrzkowski, PHYS 2356

  7. K. Piotrzkowski, PHYS 2356

  8. K. Piotrzkowski, PHYS 2356

  9. K. Piotrzkowski, PHYS 2356

  10. K. Piotrzkowski, PHYS 2356

  11. K. Piotrzkowski, PHYS 2356

  12. K. Piotrzkowski, PHYS 2356

  13. K. Piotrzkowski, PHYS 2356

  14. K. Piotrzkowski, PHYS 2356

  15. K. Piotrzkowski, PHYS 2356

  16. K. Piotrzkowski, PHYS 2356

  17. K. Piotrzkowski, PHYS 2356

  18. K. Piotrzkowski, PHYS 2356

  19. K. Piotrzkowski, PHYS 2356

  20. K. Piotrzkowski, PHYS 2356

  21. K. Piotrzkowski, PHYS 2356

  22. K. Piotrzkowski, PHYS 2356

  23. Measurement of W mass with precision Method used at hadron collidersdifferent from e+e- colliders • W  jet jet : cannot be extracted from QCD • jet-jet production  cannot be used • W  tn : since t  n + X , too many undetected • neutrinos  cannot be used onlyW  en and W mndecays are used to measure mW at hadron colliders K. Piotrzkowski, PHYS 2356

  24. q  W n ~ 300  106 events produced ~ 60  106 events selected after analysis cuts one year at low L, per experiment W production at LHC : Ex. q’ s (pp  W + X)  30 nb e, mn ~ 50 times larger statistics than at Tevatron ~ 6000 times larger statistics than WW at LEP K. Piotrzkowski, PHYS 2356

  25. Since not known (only can be measured through ETmiss), measure transverse mass, i.e. invariant mass of  in plane perpendicular to the beam :  ETmiss K. Piotrzkowski, PHYS 2356

  26. mW= 79.8 GeV mW= 80.3 GeV mTW (GeV) mTW distribution is sensitive to mW  fit experimental distributions with SM prediction (Monte Carlo simulation) for different values of mW  find mW which best fits data K. Piotrzkowski, PHYS 2356

  27. Uncertainties on mW • Come mainly from capability of Monte Carlo • prediction to reproduce real life, that is: • detector performance: energy resolution, • energy scale, etc. • physics: pTW, W, GW, backgrounds, etc. Dominant error (today at Tevatron,most likely also at LHC): knowledge of lepton energy scale of the detector: if measurement of lepton energy wrong by 1%, then measured mW wrong by 1% K. Piotrzkowski, PHYS 2356

  28. Source of uncertainty DmW Statistical error << 2 MeV Physics uncertainties ~ 15 MeV (pTW, W, GW, …) Detector performance < 10 MeV (energy resolution, lepton identification, etc,) Energy scale 15 MeV Total ~ 25 MeV (per experiment, per channel) Expected precision on mW at LHC Combining both channels (en, mn) and both experiments (ATLAS, CMS), DmW 15 MeVshould be achieved. However: very difficult measurement K. Piotrzkowski, PHYS 2356

  29. K. Piotrzkowski, PHYS 2356

  30. tt  b bjj events -- u c t d s b Dm (t-b)  170 GeV  radiative corrections S+B B Measurement of mtop • Top is most intriguing fermion: • -- mtop  174 GeV  clues about origin of particle masses ? • Discovered in ‘94 at Tevatron precise measurements of mass, couplings, etc. just started Top mass spectrum from CDF K. Piotrzkowski, PHYS 2356

  31. t g t q g t t q s (pp  + X)  800 pb 107 pairs produced in one year at low L measure mtop, stt, BR, Vtb, single top, rare decays (e.g. t  Zc), resonances, etc. production is the main background to new physics (SUSY, Higgs) Top production at LHC: e.g. ~ 102 times more than at Tevatron K. Piotrzkowski, PHYS 2356

  32. W t b Top decays: BR  100% in SM -- hadronic channel: both W  jj  6 jet finalstates. BR  50 % but large QCD multijet background. -- leptonic channel: both W    2 jets + 2 + ETmiss final states. BR  10 %. Little kinematic constraints to reconstruct mass. -- semileptonic channel: one W  jj , oneW    4 jets + 1 + ETmiss final states. BR  40 %. If  = e, m : gold-plated channel for mass measurement at hadron colliders. In all cases two jets are b-jets  displaced vertices in the inner detector K. Piotrzkowski, PHYS 2356

  33. Source of uncertainty Dmtop Statistical error << 100 MeV Physics uncertainties ~ 1.3 GeV (background, FSR, ISR, fragmentation, etc. ) Jet scale (b-jets, light-quark jets) ~ 0.8 GeV Total ~ 1.5 GeV (per experiment, per channel) Expected precision on mtop at LHC If / when Higgs discovered, comparison of measured mH with indirect measurement will be essential consistency checks of EWSB • Uncertainty dominated by the knowledge of physics and not of detector. • By combining both experiments and all channels:Dmtop ~ 1 GeV at LHC FromDmtop ~ 1 GeV, DmW ~ 15 MeV  indirect measurement DmH/mH ~ 25% (today ~ 50%) K. Piotrzkowski, PHYS 2356

  34. K. Piotrzkowski, PHYS 2356

  35. K. Piotrzkowski, PHYS 2356

  36. K. Piotrzkowski, PHYS 2356

  37. K. Piotrzkowski, PHYS 2356

  38. K. Piotrzkowski, PHYS 2356

  39. K. Piotrzkowski, PHYS 2356

  40. Real event at RHIC (BNL) K. Piotrzkowski, PHYS 2356

  41. Distribution inclusive des particules K. Piotrzkowski, PHYS 2356

  42. K. Piotrzkowski, PHYS 2356

  43. K. Piotrzkowski, PHYS 2356

  44. Transverse “radii” of the system at freeze-out K. Piotrzkowski, PHYS 2356

  45. HBT; coordinate system K. Piotrzkowski, PHYS 2356

  46. Early universe quark-gluon plasma critical point ? Tc Temperature colour superconductor hadron gas nucleon gas nuclei r0 Neutronstars The Phase Structure of QCD baryon density K. Piotrzkowski, PHYS 2356

  47. Jet quenching prediction • Before high-pt partons hadronize and form jets they interact with the medium •  decreases their momentum •  fewer high-pt particles •  “jet quenching” K. Piotrzkowski, PHYS 2356

More Related