1 / 26

Hamsa: Fast Signature Generation for Zero-day Polymorphic Worms with Provable Attack Resilience

This research paper presents Hamsa, a fast signature generation system for detecting zero-day polymorphic worms in network traffic. Hamsa uses a model-based approach to generate highly accurate and noise-tolerant signatures with provable attack resilience. Evaluation results show that Hamsa outperforms existing approaches in terms of speed and efficiency.

chumberto
Download Presentation

Hamsa: Fast Signature Generation for Zero-day Polymorphic Worms with Provable Attack Resilience

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hamsa: Fast Signature Generation for Zero-day Polymorphic Wormswith Provable Attack Resilience Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao and Brian Chavez Lab for Internet & Security Technology (LIST)Northwestern University

  2. The Spread of Sapphire/Slammer Worms

  3. Desired Requirements for Polymorphic Worm Signature Generation • Network-based signature generation • Worms spread in exponential speed, to detect them in their early stage is very crucial… However • At their early stage there are limited worm samples. • The high speed network router may see more worm samples… But • Need to keep up with the network speed ! • Only can use network level information

  4. Desired Requirements for Polymorphic Worm Signature Generation • Noise tolerant • Most network flow classifiers suffer false positives. • Even host based approaches can be injected with noise. • Attack resilience • Attackers always try to evade the detection systems • Efficient signature matching for high-speed links No existing work satisfies these requirements !

  5. Outline • Motivation • Hamsa Design • Model-based Signature Generation • Evaluation • Related Work • Conclusion

  6. Choice of Signatures • Two classes of signatures • Content based • Token: a substring with reasonable coverage to the suspicious traffic • Signatures: conjunction of tokens • Behavior based • Our choice: content based • Fast signature matching. ASIC based approach can archive 6 ~ 8Gb/s • Generic, independent of any protocol or server

  7. Invariants Unique Invariants of Worms • Protocol Frame • The code path to the vulnerability part, usually infrequently used • Code-Red II: ‘.ida?’ or ‘.idq?’ • Control Data: leading to control flow hijacking • Hard coded value to overwrite a jump target or a function call • Worm Executable Payload • CLET polymorphic engine: ‘0\x8b’, ‘\xff\xff\xff’ and ‘t\x07\xeb’ • Possible to have worms with no such invariants, but very hard

  8. Hamsa Architecture

  9. Hamsa Design • Key idea: model the uniqueness of worm invariants • Greedy algorithm for finding token conjunction signatures • Highly accurate while much faster • Both analytically and experimentally • Compared with the latest work, polygraph • Suffix array based token extraction • Provable attack resilience guarantee • Noise tolerant

  10. Hamsa Signature Generator • Core part: Model-based Greedy Signature Generation • Iterative approach for multiple worms

  11. Outline • Motivation • Hamsa Design • Model-based Signature Generation • Evaluation • Related Work • Conclusion

  12. Maximize the coverage in the suspicious pool Suspicious pool Normal pool False positive in the normal pool is bounded by r Problem Formulation Signature Generator Signature false positive bound r With noise NP-Hard!

  13. t1 t2 Joint FP with t1 FP 21% 2% 9% 0.5% 17% 1% 5% Model Uniqueness of Invariants U(1)=upper bound of FP(t1) U(2)=upper bound of FP(t1,t2) The total number of tokens bounded by k*

  14. (COV, FP) (82%, 50%) (70%, 11%) (67%, 30%) (62%, 15%) (50%, 25%) (41%, 55%) (36%, 41%) (12%, 9%) Signature Generation Algorithm token extraction t1 u(1)=15% tokens Suspicious pool Order by coverage

  15. (COV, FP) (COV, FP) (82%, 50%) (69%, 9.8%) (68%, 8.5%) (70%, 11%) (67%, 1%) (67%, 30%) (40%, 2.5%) (62%, 15%) (35%, 12%) (50%, 25%) (41%, 55%) (31%, 9%) (36%, 41%) (10%, 0.5%) (12%, 9%) Signature Generation Algorithm Signature t1 t2 u(2)=7.5% Order by joint coverage with t1

  16. Algorithm Analysis • Runtime analysis O(T*(|M|+|N|)) • Provable Attack Resilience Guarantee • Analytically bound the worst attackers can do! • Example: K*=5, u(1)=0.2, u(2)=0.08, u(3)=0.04, u(4)=0.02, u(5)=0.01 and r=0.01 • The better the flow classifier, the lower are the false negatives

  17. Attack Resilience Assumptions • Two Common assumptions for any sig generation sys • Two Unique assumptions for token-based schemes • Attacks to the flow classifier • Our approach does not depend on perfect flow classifiers • With 99% noise, no approach can work! • High noise injection makes the worm propagate less efficiently. • Enhance flow classifiers

  18. Improvements to the Basic Approach • Generalizing Signature Generation • use scoring function to evaluate the goodness of signature • Iteratively use single worm detector to detect multiple worms • At the first iteration, the algorithm find the signature for the most popular worms in the suspicious pool. • All other worms and normal traffic treat as noise.

  19. Outline • Motivation • Hamsa Design • Model-based Signature Generation • Evaluation • Related Work • Conclusion

  20. Experiment Methodology • Experiential setup: • Suspicious pool: • Three pseudo polymorphic worms based on real exploits (Code-Red II, Apache-Knacker and ATPhttpd), • Two polymorphic engines from Internet (CLET and TAPiON). • Normal pool: 2 hour departmental http trace (326MB) • Signature evaluation: • False negative: 5000 generated worm samples per worm • False positive: • 4-day departmental http trace (12.6 GB) • 3.7GB web crawling including .mp3, .rm, .ppt, .pdf, .swf etc. • /usr/bin of Linux Fedora Core 4

  21. Results on Signature Quality • Single worm with noise • Suspicious pool size: 100 and 200 samples • Noise ratio: 0%, 10%, 30%, 50%, 70% • Noise samples randomly picked from the normal pool • Always get above signatures and accuracy. • Multiple worms with noises give similar results

  22. Speed Results • Implementation with C++/Python • 500 samples with 20% noise, 100MB normal traffic pool, 15 seconds on an XEON 2.8Ghz, 112MB memory consumption • Speed comparison with Polygraph • Asymptotic runtime: O(T) vs. O(|M|2), when |M| increase, T won’t increase as fast as |M|! • Experimental: 64 to 361 times faster (polygraph vs. ours, both in python)

  23. Outline • Motivation • Hamsa Design • Model-based Signature Generation • Evaluation • Related Work • Conclusion

  24. Related works

  25. Conclusion • Network based signature generation and matching are important and challenging • Hamsa: automated signature generation • Fast • Noise tolerant • Provable attack resilience • Capable of detecting multiple worms in a single application protocol • Proposed a model to describe the worm invariants

  26. Questions ?

More Related