1 / 17

Beta- decay studies in N~Z nuclei using no- core configuration-interaction model

Beta- decay studies in N~Z nuclei using no- core configuration-interaction model. Wojciech Satuła. in collaboration with: J. Dobaczewski, W. Nazarewicz, M. Rafalski & M. Konieczka. Isospin symmetry breaking corrections to the superallowed beta

chung
Download Presentation

Beta- decay studies in N~Z nuclei using no- core configuration-interaction model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Beta-decaystudies in N~Z nucleiusing no-core configuration-interaction model WojciechSatuła in collaboration with: J. Dobaczewski, W. Nazarewicz, M. Rafalski & M. Konieczka Isospinsymmetrybreakingcorrections to the superallowed beta decays from the angularmomentum and isospinprojected DFT: briefoverviewfocusing on sources of theoreticalerrors and on limitations of the „static” MR DFT Extension of the staticapproach: • towards NO CORE shell model with basiscutoff • dictated by the self-consistent p-h configurations • examples: • 32Cl-32S, 62Zn-62Ga, • 38Ca-38K Summary & perspectives

  2. Superallowed I=0+ T=1 I=0+T=1 Fermi beta decays (testing the Standard Model of elementaryparticles) 10 casesmeasuredwithaccuracyft ~0.1% 3 casesmeasuredwithaccuracyft ~0.3%  test of the CVC hypothesis (ConservedVectorCurrent) 0.3% - 1.5% 1.5% ~2.4% adopted from J.Hardy’s, ENAM’08 presentation  test of unitarity of the CKM matrix Towner & Hardy Phys. Rev. C77, 025501 (2008) |Vud|2+|Vus|2+|Vub|2=0.9997(6) |Vud| = 0.97418 + 0.00026 - 0.9490(4) 0.0507(4) <0.0001 mass eigenstates CKM Cabibbo-Kobayashi -Maskawa weak eigenstates

  3. How to calculate the superallowed Fermi beta decay ME using the double-projected DFT framework? I=0+,T=1,Tz=-1 Skyrme-Hartree-Fock DF t1/2 Qb I=0+,T=1, Tz=0 BR antialigned state inN=Z (o-o) nucleus ground state inN-Z=+/-2 (e-e) nucleus Project on goodisospin (T=1) and angularmomentum (I=0) (and perform Coulomb rediagonalization) Project on goodisospin (T=1) and angularmomentum (I=0) (and perform Coulomb rediagonalization) |2=2(1-dC) |I=0,T~1,Tz=0> T+/- <T~1,Tz=+/-1,I=0| | ~ ~

  4. |Vud| & unitarity of the CKM – a survey dC- dC [%] (HT) (SV) 10 20 30 40 50 60 70 (a) I.S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501(2008). Ft=3071.4(8)+0.85(85); Vud=0.97418(26) 0.5 (b) 1.0025 (c,d) W. Satuła,J. Dobaczewski, W. Nazarewicz, M. Rafalski, Phys. Rev. Lett. 106, 132502 (2011); Phys. Rev. C 86, 054314(2012). 1.0000 0 (a) (a) (c) (c) |Vud|2+|Vus|2+|Vub|2 |Vud| (d) (d) 0.9975 0.976 Vud=0.97444(23) PRL Ft=3070.4(9); n-decay (b) n-decay (b) -0.5 0.975 Vud=0.97397(27) PRC Ft=3073.6(12); 0.9950 0.974 superallowed 0+0+ b-decay superallowed 0+0+ b-decay O. Naviliat-Cuncic and N. Severijns, Eur. Phys. J. A 42, 327 (2009); Phys. Rev. Lett. 102, 142302 (2009). 0.9925 mirror T=1/2 nuclei 0.973 mirror T=1/2 nuclei p-decay A p-decay 0.972 0.971 62 10 0.970 H. Liang, N. V. Giai, and J. Meng, Phys. Rev. C 79,064316 (2009). 38

  5. 1.5 1.0 0.5 0 -0.1 -0.2 -0.3 SOURCES OF THEORETICAL ERRORS Configurationdependence: Basis-sizedependence: l l l jn jp s s s jp y y y ~10% i i jn i jn jp Functionaldependence: x x x A=34 SV Ft=3073.6(12) SV: 34Ar  34Cl Vud=0.97397(27) dC [%] |Vud|2+|Vus|2+|Vub|2= =0.99935(67) 34Cl  34S Ft=3075.0(12) SHZ2: DEI=0,T=1 Vud=0.97374(27) |Vud|2+|Vus|2+|Vub|2= =0.99890(67) DE [MeV] DEHF (TO) DEIV asym=42.2MeV!!! Relative orientation of shape and current

  6. MEAN-FIELD compute „n” self-consistentSlaterdeterminants corresponding to low-lying p-h excitations jn j2 j1 j3 ………… PROJECTION non-orthogonal set of K- and T-mixedstates {|I>(2)}k2 {|I>(1)}k1 {|I>(3)}k3 {|I>(n)}kn ………….. STATE MIXING Hill-Wheeler equation : Hu=ENu Ei |Ii>

  7. No-coreshell model withbasiscutoffdictated by the self-consistent p-h DFT states theory 32Cl exp 6 5 4 DE (MeV) (2+) 3 (2+) 2 (2+) 1 (0+) (2+) 0 I=1+ I=2+ I=3+ I=0+ W.Satula, J.Dobaczewski, M.Konieczka, W.Nazarewicz, Acta Phys. Polonica B45, 167 (2014)

  8. 32Cl I=1+ T 4622, 4636 32S I=1+ (keV) (keV) 1 4000 4000 1 T 3000 3000 1 W.Satula, J.Dobaczewski, M.Konieczka, W.Nazarewicz, Acta Phys. Polonica B45, 167 (2014) 1 2000 2000 0 1000 1000 1 1 0 1 1 0 0 7002keV 0keV theory experiment theory experiment our:δC≈ 6(2)% Experiment: δC≈ 5.3(9)% SM+WS calculations: δC≈ 4.6(5)%. D. Melconian et al., Phys. Rev. Lett. 107, 182301 (2011).

  9. 5 4 3 2 1 0 62Zn, I=0+statesbelow 5MeV SM (GXPF1) SM (MSDI3) SVmix (6 Slaters) EXP (new) EXP (old) 2pph 2nph 1pp2p2h 1nph Excitationenergy of 0+states [MeV] K.G. Leach et al. PRC88, 031306 (2013) 1pph I=0+ before mixing HF 0+groundstate

  10. -522 -510 -523 -511 -524 -525 -512 -526 Stability of configuration – interactioncalculations + g.s. EXP Energy (MeV) ~200keV normalized 6 n1 5 + + + + pp1 n1 n2 p1 p2 4 p1 dC [%] 3 2 EHF (MeV) 1 Z 0 X~Y

  11. 3.0 2.5 2.0 1.5 1.0 0.5 0.0 A case of A=38 (38Ca38K) Staticapproachgives: dC=8.9% I=0+, T=1 EXP dC=1.5% DE [MeV] dC=1.7% 38K 38Ca 3Slaters 4 Slaters mixing:

  12. Summary & perspectives Isospinsymmetrybreakingcorrections from the „static” double-projected DFT are in verygood agreement with the Hardy–Townerresults. We have to go BEYOND STATIC MR-EDF in order to address high-qualityspectroscopic data available today. First attemptsareveryencouragingatleast concerningenergy spectra!!!

  13. 1.5 1.0 0.5 0 10 14 18 22 26 30 34 mixing the X,Y,Z orientations in lightnuclei Tz=-1  Tz=0 averages mixing dC [%] T&H A W.Satula, J.Dobaczewski, M.Konieczka, W.Nazarewicz, Acta Phys. Polonica B45, 167 (2014)

  14. 0.6 0.4 0.2 0 3/2 5/2 7/2 1/2 SV SHZ2 42Sc DE (MeV) nKpK K Mixing of statesprojected from the antialignedconfigurations: 3.0 ( ) 42Sc 2.5 T=1 2.0 1.5 Excitationenergy [MeV] 1.0 0.5 T=0 0 0 1 2 3 4 5 6 7 angularmomentum

  15. How to calculate the superallowed Fermi beta decayusing the projected DFT framework? n n n n p p p p n n n p p p n p n p n n p p T=0 Tz=-/+1 I=0+,T=1 |<T+/->|2=2(1-dC) (N-Z=-/+2) t1/2 Qb I=0+,T=1 (N-Z=0) BR Tz=0 MEAN FIELD CORE CORE anti-aligned configurations aligned configurations n p or or ISOSPIN PROJECTION T=1 T=0 Mean-fieldcandifferentiatebetween T=1 states are not representable in a „separable” mean-field! and onlythroughtime-oddpolarizations!

  16. n n p p n p n p MEAN FIELD E-E CORE anti-aligned configurations n p or T=1 T=0 T=1 states are not representable in a „separable” mean-field!!!

More Related