1 / 84

Neutrino Masses, Double Beta Decay and Nuclear Structure

Neutrino Masses, Double Beta Decay and Nuclear Structure. ECT*(Trento), Doctoral Training Program on “Neutrinos in Nuclear, Particle- and Astrophysics”. Amand Faessler, University of Tuebingen, www.uni-tuebingen.de/faessler/. CONTENTS: 0. History of the Neutrinos (Introduction)

alton
Download Presentation

Neutrino Masses, Double Beta Decay and Nuclear Structure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino Masses, Double Beta Decay and Nuclear Structure ECT*(Trento), Doctoral Training Program on “Neutrinos in Nuclear, Particle- and Astrophysics”. Amand Faessler, University of Tuebingen, www.uni-tuebingen.de/faessler/

  2. CONTENTS: 0. History of the Neutrinos (Introduction) 1. Neutrino Properties 2. The See-Saw Model 3. The Single Beta Decay 4. The Neutrinoless Double Beta Decay 5. The Quasi-Particle Random Phase Approximation (QRPA) 6. Comparison of QRPA, Shell Model, Projected Hartree Fock Bogoliubov (PHBF), Interacting Boson Model 2 7. Can one measure with Charge Transfer Reactions the 0nbb-Matrix element? 8. Competing Mechanisms for the 0nbb 9. The Heidelberg-Moscow data and the Neutrino Mass FAESSLER; Trento 2011

  3. 0. History of the Neutrinos • 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino ne • 1962 Brookhaven; detection of muon neutrino nm • 2000 Fermi Lab; detection of tau neutrino nt • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay • 1986 Santa Barbara (Caldwell) detection of 2nbb. • 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011

  4. Sehr geehrte radioaktiven Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular momentum. FAESSLER; Trento 2011

  5. History of the Neutrinos • 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino ne • 1962 Brookhaven; detection of muon neutrino nm • 2000 Fermi Lab; detection of tau neutrino nt • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay • 1986 Santa Barbara detection of 2nbb decay • 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011

  6. Reines and Cowen at the Neutrino-Experiment (at Savannah River Reactor) Fissions of 23592 Uranium143 produces neutron rich fragments. Beta decay: n  p + e- + nec FAESSLER; Trento 2011

  7. History of the Neutrinos • 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino ne • 1962 Brookhaven; detection of muon neutrino nm p-  m- + ncm; ncm + p  n + m+ (no: e+) • 2000 Fermi Lab; detection of tau neutrino nt • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay • 1986 Santa Barbara: 2nbb decay by Caldwell • 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011

  8. 1. Neutrino properties: What is the Mass of the Neutrino ? • mne Mass measurement in the single beta decay • nm and nt ? • Si mni from cosmology • mnefrom the neutrinoless double beta decay FAESSLER; Trento 2011

  9. antineutrino For the Triton FAESSLER; Trento 2011 Te [keV] (Te - Q) [eV]

  10. Mass of the Electron Neutrino?Tritium decay (Mainz + Troitsk) With: FAESSLER; Trento 2011

  11. Upper Limit of the Neutrino Mass: < (2.2 eV)2 ; 95% conf. limit 5 % 95 % (2.2 eV)2 0 mnb2 FAESSLER; Trento 2011

  12. A dinosaur on trip KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; Trento 2011

  13. Mass of nm (Paul Scherrer Institut 1996): FAESSLER; Trento 2011

  14. Mass of tau Neutrino ARGUS (DESY Hamburg) e+ + e- t+ + t-; mnt < 28 MeV by ALEPH mnt < 15 MeV together FAESSLER; Trento 2011

  15. Neutrino Mass from Astrophysics: Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) Hubble law: v = H0 *Distance = h*100 [km/(sec*Mpc)] *Distance [Mpc] = 71[km/(sec*Mpc)]*Distance [Mpc]; h=0.71; Hubble Constant: H0 = 71 [km/sec*Mpc] FAESSLER; Trento 2011

  16. k = 2p/l [(h=0.71)/ Mpc] FAESSLER; Trento 2011

  17. W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0 0.01 FAESSLER; Trento 2011

  18. W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0.05 0.01 FAESSLER; Trento 2011

  19. W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0.25 0.01 FAESSLER; Trento 2011

  20. FAESSLER; Trento 2011

  21. WMAP = Wilkinson Microwave Anisotropy Probe. • ACBAR = Arcminute Cosmology Bolometer Array Receiver (Berkeley) • CBI = Cosmic Background Imager (CALTEC) • 2dFGRS = 2 degree Field Galaxy Redshift Survey FAESSLER; Trento 2011

  22. Page 1 FAESSLER; Trento 2011

  23. 2. The See-Saw Model Diagonalise the matrix: FAESSLER; Trento 2011

  24. 3. The Single Beta Decay p e nc p e -1/( MW2 )d(r12) W- 1/(q2 – MW2 ) n n n FAESSLER; Trento 2011

  25. Page 17 FAESSLER; Trento 2011

  26. 4. Neutrino Mass from Neutrinoless Double Beta Decay • The neutrinoless Double Beta Decay is forbidden in the Standard Model. Allowed in GUT‘s and SUSY. It determines the absolute mass of Majorana Neutrinos. • Matrix elements as important as the data. • Practically all Grand Unified Theories and Supersymmetry request massive Majorana Neutrinos FAESSLER; Trento 2011

  27. Oνββ-Decay (forbidden in Standard Model) only formassive MajoranaNeutrinos ν = νc P P Left ν Phase Space 106x2νββ Left n n FAESSLER; Trento 2011

  28. GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: FAESSLER; Trento 2011

  29. P P ν e- e- ν L/R l/r 2*2*2 = 8 posibilities n n FAESSLER; Trento 2011

  30. p p e- e- n n L/R l/r W n n P light ν heavy N Neutrinos P ν l/r n l/r 8x8x2 = 128 contributions n FAESSLER; Trento 2011

  31. Theoretical Description of Nuclei: Vadim Rodin, Fedor Simkovic, Amand Faessler, Saleh Yousef, D.-L. Fang P k 0+ P e2 k 1+ e1 k 2- ν Ek n n Ei 0+ 0+ 0νββ FAESSLER; Trento 2011

  32. Neutrinoless Double Beta- Decay Probability FAESSLER; Trento 2011

  33. 5. The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model QRPA starts with Pairing: FAESSLER; Trento 2011

  34. Effective Majorana Neutrino-Mass for the 0nbb-Decay Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT = I FAESSLER; Trento 2011

  35. FAESSLER; Trento 2011

  36. Page 25b FAESSLER; Trento 2011

  37. 2011 FAESSLER; Trento 2011

  38. From Dirac to Majorana Neutrinos DIRAC NEUTRINOS: Majorana Neutrinos: FAESSLER; Trento 2011

  39. Neutrino Masses • Single Beta Decay (Mainz, Troisk) • Double Beta Decay Majorana Mass (Tübingen): • Astophysics: S = m1 + m2 + m3 < 0.17 to 2.0 [eV] Depends on Cosmological models (Hannestad) < 2.2 [eV] < 0.27 [eV] FAESSLER; Trento 2011

  40. Page 26 FAESSLER; Trento 2011

  41. FAESSLER; Trento 2011

  42. PMNS-Matrix Parameters 2011 Pontecorvo-Maki-Nakagawa-Sakata • Solar: • Atmospheric: • Reactor FAESSLER; Trento 2011

  43. Results from Oscillations: No Hierarchy, no absolute Mass Scale (Bild) Fogli, Lisi, Marrone, Palazzo: Prog. Part. Nucl. Phys. 57(2006)742; Data 2011 Sequence 1-2 fixed by oscillations in the sun and in vacuum. No oscillations 13 for solar neutrinos observed,

  44. Effective Majorana Neutrino-Mass for the 0nbb-Decay Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT = I CP = T= K FAESSLER; Trento 2011

  45. Normal Hierarchy: Double Beta Decay Majorana Mass mbb versus lowest mass m1

  46. Inverted Hierarchy: Double Beta Decay Majorana Mass mbb versus lowest mass m3 FAESSLER; Trento 2011

  47. 6. Different Methods for the 0nbb-Matrix Elements for the Light Majorana Neutrino Exchange.A. Escuderos, A. Faessler, V. Rodin, F. Simkovic, J. Phys. G37 (2010) 125108; arXiv: 1001.3519 [nucl-th] • Quasi-Particle Random Phase Approximation (QRPA; Tübingen). • Shell Model (Strasbourg-Madrid). • Angular Momentum Projected Hartee-Fock-Bogoliubov (Tuebingen; P. K. Rath et al.). • Interacting Boson Model (Barea and Iachello). Amand Faessler, Tuebingen

  48. Neutrinoless Double Beta- Decay Probability FAESSLER; Trento 2011

  49. QRPA all the Ring diagrams: Ground State (Exercise IV.5): 0, 4, 8, 12 , … quasi- particles (seniority) b) The Shell Model Ground state: 0, 4, 6, 8, …. Problem for SM: Size of the Single Particle Basis. Amand Faessler, Tuebingen

  50. Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.). 128Te Not in QRPA 82Se Increasing Admixtures in the Ground State Amand Faessler, Tuebingen

More Related