390 likes | 766 Views
Spherical Parameterization and Remeshing. Emil Praun, University of Utah Hugues Hoppe, Microsoft Research. Motivation: Geometry Images. [Gu et al. ’02]. completely regular sampling. 3D geometry. geometry image 257 x 257; 12 bits/channel. Motivation: Geometry Images.
E N D
Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research
Motivation: Geometry Images [Gu et al. ’02] completely regular sampling 3D geometry geometry image257 x 257; 12 bits/channel
Motivation: Geometry Images • Geometry Images [Gu et al. ’02] • No connectivity to store • Render without memory gather operations • No vertex indices • No texture coordinates • Regularity allows use of image processing tools
Spherical Parametrization Genus-0 models: no a priori cuts geometry image257 x 257; 12 bits/channel
Contribution • Our method: genus-0 no constraining cuts • Less distortion in map; better compression • New applications: • morphing • GPU splines • DSP
Outline • Spherical parametrization • Spherical remeshing • Results & applications
sphere S mesh M Spherical Parametrization [Kent et al. ’92] [Haker et al. 2000] [Alexa 2002] [Grimm 2002] [Sheffer et al. 2003] [Gotsman et al. 2003] • Goals: • robustness • good sampling coarse-to-fine stretch metric [Hoppe 1996] [Hormann et al. 1999] [Sander et al. 2001] [Sander et al. 2002]
Coarse-to-Fine Algorithm Convert to progressive mesh Parametrize coarse-to-fine Maintain embedding & minimize stretch
Before Vsplit: No degenerate/flipped 1-ring kernel Apply Vsplit: No flips if V inside kernel Coarse-to-Fine Algorithm V
Before Vsplit: No degenerate/flipped 1-ring kernel Apply Vsplit: No flips if V inside kernel Optimize stretch: No degenerate (they have stretch) Coarse-to-Fine Algorithm V
Traditional Conformal Metric • Preserve angles but “area compression” • Bad for sampling using regular grids
Stretch Metric [Sander et al. 2001] [Sander et al. 2002] • Penalizes undersampling • Better samples the surface
Regularized Stretch • Stretch alone is unstable • Add small fraction of inverse stretch without with
Outline • Spherical parametrization • Spherical remeshing • Results & applications
Domains And Their Sphere Maps tetrahedron octahedron cube
Outline • Spherical parametrization • Spherical remeshing • Results & applications
Results Model courtesy of Stanford University David
Timing Results Pentium IV, 3GHz, initial code
Timing Results Pentium IV, 3GHz, optimized code
Rendering interpretdomain rendertessellation
Level-of-Detail Control n=1 n=2 n=4 n=8 n=16 n=32 n=64
Morphing • Align meshes & interpolate geometry images
Geometry Compression • Image wavelets • Boundary extension rules • spherical topology • Infinite C1 lattice* • Globally smooth parametrization* *(except edge midpoints)
1.5 KB 3 KB 12 KB Compression Results
Smooth Geometry Images [Losasso et al. 2003] GPU 3.17 ms 33x33 geometry image C1 surface ordinary uniform bicubic B-spline
Summary original sphericalparametrization geometryimage remesh
Conclusions • Spherical parametrization • Guaranteed one-to-one • New construction for geometry images • Specialized to genus-0 • No a priori cuts better performance • New boundary extension rules • Effective compression, DSP, GPU splines, …
Future Work • Explore DSP on unfolded octahedron • 4 singular points at image edge midpoints • Fine-to-coarse integrated metric tensors • Faster parametrization; signal-specialized map • Direct DSM optimization • Consistent inter-model parametrization