1.07k likes | 1.08k Views
This lecture explores the observed bi-modality in galaxy properties, such as color, star formation rate, and bulge/disk ratio, and discusses the role of cold flows, clustering, and feedback processes in shaping galaxy formation and evolution. It also examines the origin of the bi-modality and its dependence on environmental factors.
E N D
Lecture On the Origin of Galaxy Bi-modality: Cold Flows, Clustering and Feedback • Observed bi-modality • Shock heating vs cold flows • Cold filaments in hot halos -- clustering scale • Feedback Processes • Origin of the bi-modality
Observed Scale • bi-modality/transition at M*~3x1010Mʘ ~L* below: disks, blue, star forming, low Z, LSB, M/L decreasing with M along a “fundamental line”, in field (small halos), … above: spheroids, red, old-pop, high Z, HSB, M/L increasing with M, “fundamental plane”, clustered (massive halos), AGNs, … Mhalo ~6x1011Mʘ • very blue galaxies → bursty star formation • big blue galaxies at z~2-3 (e.g. SCUBA) → early star formation in big objects • luminous red galaxies at z~0-1 (e.g. EROs) → early star formation, then shut off
Bi-modality in color, SFR, bulge/disk 0.65<z<0.75 E/S0/Sa Disks and Irregulars M*crit~3x1010Mʘ Bell
Luminosity function: Red vs Blue M*crit~3x1010Mʘ M* SDSS Baldry et al. 04
Transition Scale Bulge/Disk Surface Brightness HSB spheroids LSB disks M*crit~3x1010Mʘ M*crit~3x1010Mʘ SDSS Kauffmann et al. 03
Transition in Metallicity M*crit~3x1010Mʘ SDSS Tremonti et al.
Bi-modality: Age vs Stellar Mass young old young old M*crit~3x1010Mʘ SDSS Kauffmann et al. 03
Bi-modality in Color-Magnitude SDSS Baldry et al. 04
Color-Magnitude bimodality & B/D depend on environment ~ halo mass environment density: low high very high disks spheroids Mhalo<6x1011 “field” Mhalo>6x1011 “cluster” SDSS: Hogg et al. 03
Age & Color bi-modalily correlated with environment density, or halo mass Mhalo<6x1011 “field” Mhalo>6x1011 “cluster” spheroids, old disks, young Kauffmann et al. 2004
Color-Magnitude Bimodality depends on B/D and Environment density: low high very high disks spheroids SDSS: Hogg et al. 03
Bi-modality at high z Combo-17
Mass versus Light Distribution halo mass galaxy stellar mass 40% of baryons
<M/L> vs M for halos in 2dF assuming ΛCDM M/L 10 11 12 13 14 M Using conditional luminosity function: Van den Bosch, Mo, Yang 03
Emission Properties vs. Stellar Mass low-mass emission galaxies are almost all star formers high-mass emission galaxies are almost all AGN Kauffmann et al. 2004
Observed Characteristic Scale bi-modality / transition M*~3x1010Mʘ Mvir~6x1011Mʘ Vvir~120 km/s discs, blue star-forming, low Z, LSB M/L∝M-1, fundamental line, small halos (field) spheroids, red old-pop, high Z, HSB M/L∝M, fundamental plane, massive halos (clustered), AGNs
Standard Picture of Infall to a Disc Rees & Ostriker 77, Silk 77, White & Rees 78, … Perturbed expansion Halo virialization Gas infall, shock heating at the virial radius Radiative cooling Accretion to disc if tcool<tff Stars & feedback M<Mcool~1012-13M⊙
Cooling rate T-1 Line emission Bremsstrahlung 2 2 N 1 - 1 - - ( ) [erg g s ] / molecules per g e per particle A q T N A 2
Cooling vs Free Fall Blumenthal, Faber, Primack & Rees 86 Rees & Ostriker 77, Silk 77, White & Rees 78 T 104 105 106 107 +3 +1 galaxies Brems. log gas density CDM -1 clusters tcool<tff upper bound too big H2 -3 He -5 H 10 30 100 300 1000 virial velocity
2. Shock-Heating vs Cold Flows 8
Growth of a Massive Galaxy T °K 1012Mʘ 1011Mʘ shock-heated gas “disc” Spherical hydro simulation Birnboim & Dekel 03
A Less Massive Galaxy T °K 1011Mʘ shocked cold infall “disc” Spherical hydro simulation Birnboim & Dekel 03
Hydro Simulation: ~Massive M=3x1011 Kravtsov et al. z=4 M=3x1011 Tvir=1.2x106 Rvir=34 kpc virial shock
Less Massive M=1.8x1010 Kravtsov et al. virial radius cold infall z=9 M=1.8x1010 Tvir=3.5x105 Rvir=7 kpc
Mass Distribution of Halo Gas disk cold flows density shock- heated adiabatic infall Temperature Analysis of Eulerian hydro simulations by Birnboim, Zinger, Dekel, Kravtsov
Shock Stability (Birnboim & Dekel 03): post-shock pressure vs. gravitational collapse stable: ln P adiabatic: Birnboim & Dekel 03 4 / 3 ln s with cooling rate q (internal energy e): V P e t (ln ) 5 5 d P q comp t eff (ln ) 3 21 d e cool q 3 e T ( 21 4 R 2 T 4 t V s t cool post pre comp , ) 16 q T Z 5 3 V 1 1 Stability criterion: compress cool t t 10 eff 7
Gas through shock: heats to virial temperature compression on a dynamical timescale versus radiative cooling timescale Shock-stability analysis (Birnboim & Dekel 03): post-shock pressure vs. gravitational collapse 1 1 21 4 R compress cool t t s t compress 5 3 V
Compression 3 u . u const r
Spherical Simulation vs Model γcrit=1.42 eff time
A virial shock in a 3D cosmological simulation: at Mcrit – rapid expansion from the inner halo to Rvir d(Entropy)/dt Libeskind, Birnboim, Dekel 08
Critical mass for shock heating: Apply tcool ~tcompress with ρ, V, R at the virial radius for ΛCDM halos Approximate cooling: 7 . 0 1 Z T T ~ 1.6x106 K [ (Z/0.1)0.7 (fb/0.05) (ρr/v)0.1Rv (1+z)3/2]1/2 Vvir~140 km/s [ (Z/0.1)0.7(fb/0.05) (ρr/v)0.1Rv (1+z)3/2]1/4 Mhalo~7x1011 M⊙[ (Z/0.1)0.7(fb/0.05) (ρr/v)0.1Rv (1+z)-1/2]3/4 ~coincides with the bi-modality scale
Shock-Heating Scale . 0 13 1 18 1 ( ) Cvir M z 11 ) 0 log ( / 7 . 1 Z Z z 6x1011Mʘ Mvir [Mʘ] 300 Vvir [km/s] 250 100 120
Shock-Heating Scale Dekel & Birnboim 06 stable shock Mvir [Mʘ] 6x1011 Mʘ typical halos unstable shock
Fraction of Cold Gas in Halos: Cosmological simulations (Kravtsov) cold hot Birnboim, Dekel, Neistein 2007 Zinger, Birnboim, Dekel, Kravtsov
Hot Gas in Elliptical Galaxies Mathews & Brighenti 04; O’Sullivan et al. 01
Cold Flows in Typical Halos 1013 shock heating 1012 Mvir [Mʘ] 2σ (4.7%) M* of Press Schechter 1011 at z>1 most halos are M<Mshock 1σ (22%) 0 1 2 3 4 5 redshift z
Shock-heating Scale Birnboim & Dekel 03 T 104 105 106 107 +3 M~6x1011Mʘ cold infall into discs +1 Brems. log gas density -1 shock heating H2 CDM -3 tcool<tff -5 He H 10 30 100 300 1000 virial velocity
3. Filaments in Hot Medium At high redshift, in relatively isolated galaxies Relation to the universal clustering scale 16
At High z, in Massive Halos: Cold Streams in a Hot Medium in M>Mshock Totally hot at z<1 Cold streams at z>2 shock cooling no shock
Cold, dense filaments and clumps (50%) riding on dark-matter filaments and sub-halos Birnboim, Zinger, Dekel, Kravtsov