1 / 21

A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry

Explore the application of the RS1 model with bulk fermions to explain fermion mass hierarchy and FCNC suppression. Discuss the T´ group and its representations for leptons and quarks, leading to a framework for realistic fermion masses and mixings.

cindysmith
Download Presentation

A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry Felix Yu University of California, Irvine Pheno 2010 M-C. Chen, K. T. Mahanthappa, FY – Phys. Rev. D 81, 036004 (2010) [arXiv: 0907.3963 [hep-ph]]

  2. Motivation • Fermion mass hierarchy unexplained • Gauge hierarchy problem motivates new physics at about TeV • Randall-Sundrum (RS1) model with bulk fermions provides a good framework • Can get fermion mass hierarchy with O(1) coefficients • Need to suppress FCNCs

  3. Randall-Sundrum • RS1 Model – warped geometry • 5th dimension compactified via S1/2 • Higgs field confined to TeV brane (y = R), other fields propagate in bulk • From compactification and boundary conditions, can find Fourier modes for bulk fields • SM masses and mixings arise from zero modes • Integrate out y to find overlap between SM fields and Higgs Randall, Sundrum (1999) Gherghetta, Pomarol (2000), Huber, Shafi (2000), Grossman, Neubert (1999)

  4. Flavor Changing Neutral Currents in RS • Change from gauge interaction basis to mass basis • Generically get FCNCs if bulk masses are not equal • Solutions: (1) alignment, (2) degeneracy

  5. The Finite Group T´ • Double covering of A4 • A4 is the discrete invariant rotations of a tetrahedron • Has two generators: S=(1234) (4321), T=(1234) (2314) • S2=R, T3=1, (ST)3=1, R2=1 • R=1: 1, 1´, 1´´, 3 (vector) [use for leptons] • R=-1: 2, 2´, 2´´ (spinorial) [use for quarks] Frampton, Kephart (1995)

  6. Assignment of T´ Representations • Motivated by neutrino mixing data: assign L ~ 3 (LH lepton doublets), N ~ 3 (RH neutrinos) under T to obtain the tri-bimaximal mixing pattern • Introduce e ~ 1,  ~ 1,  ~ 1 for charged lepton masses • Tree-level lepton FCNCs are eliminated via degeneracy (left-handed lepton doublets share a common bulk mass term) and alignment (right-handed lepton singlets can freely rotate) • Motivated by quark masses, use 2  1 assignment • Tree-level quark FCNCs involving first and second generations are eliminated via degeneracy (up- and down-type first two generations share a common bulk mass term) • Require additional flavon fields to break T symmetry on the IR brane

  7. Leptons in T´ Purely Dirac neutrino masses Seesaw type 1 neutrino masses

  8. Quarks in T´:2 1 Framework Down-type Yukawa Lagrangian is exactly analogous

  9. Parameter Counting • Input parameters (Naïve counting) • Charged lepton: 8 (= 4 bulk + 3 Yukawa + 1 flavon) • Neutrino: [seesaw] 6 [7] (= 2 bulk + 2 [3] Yukawa + 2 flavon) • Quark: 24 = (6 bulk + 8 Yukawa + 10 flavon) • Actual number of independent input combinations • 16 = Lepton matrix (3) + Neutrino matrix (2) + Quark matrices (6 + 5) • Contrast with anarchic case • 36 [30] for leptons, 36 for quarks • Fit parameters • Lepton and quark masses (3 + 6 = 9) • CKM matrix (+ CP violating phase) (3 + 1 = 4) • Neutrino mixing angles (3) 16 Inputs, 16 Outputs

  10. Results –Leptons Set all leptonic Yukawas to 1. Renormalization effects negligible. Gives me=511 keV, m=105.7 MeV, m=1.777 GeV For normal hierarchy Normal, Dc: msol2 = 7.6370  10-5 eV2, matm2 = 2.4031  10-3 eV2 For normal hierarchy Normal, SS: msol2 = 7.6520  10-5 eV2, matm2 = 2.4001  10-3 eV2 For inverted hierarchy Inverted, SS: msol2 = 7.6560  10-5 eV2, matm2 = –2.4009  10-3 eV2 Experimental: msol2 = 7.65  10-5 eV2, matm2 = 2.40  10-3 eV2 Fusaoka, Koide (1998), Schwetz, Tortola, Valle (2008)

  11. Bulk mass parameters Results – Quarks Flavons and Yukawas Other Yukawas set to 1 Csaki, Falkowski, Weiler (2008)

  12. Results – CKM and Jarlskog Corrections to quark mixings from running are small. Perform fit at mZ Fusaoka, Koide (1998), Charles, et al. (CKMfitter Group) (2009)

  13. Leading FCNC Estimate • Leading contribution is from dim-6 operators arising from fermion zero-modes mixing with KK modes • Scaled to Z-coupling, leading contribution is • Using MKK ~ 3 TeV, kR ~ 11, v = 246 GeV: • coefficient is 2.96510-6 for u-c transition • coefficient is 4.15610-6 for d-s transition

  14. Conclusions • RS1 + T´ provides a framework for realistic fermion masses and mixings • Motivated by neutrino mixings and quark masses, we choose T´ representations • This choice eliminates tree-level lepton FCNCs and first-second generation quark FCNCs • Can fit for all SM fermion masses, CKM matrix, and Jarlskog invariant with 16 input parameter combinations • Allows a low first KK mass scale, testable at colliders

  15. Group Algebra of T´ 2 S=A1, T=A2, 2´ S=A1, T=2A2, 2´´ S=A1, T=A2 1 S=1, T=1, 1´ S=1, T=, 1´´ S=1, T=2 3 Feruglio, Hagedorn, Lin, Merlo (2007)

  16. Neutrino Constraints • Neutrino measurements (at 2) • (at 1) • Well-fit by Tri-Bimaximal Mixing (TBM) Schwetz, Tortola, Valle (2008) Harrison, Perkins, Scott (1999) TBM can be easily obtained from A4 or T´ group symmetries Ma, Rajasekeran (2001)

  17. Leptons in T´ T´ contraction: Diagonal charged lepton mass matrix because of T´ assignments and flavon VEVs

  18. 2  1 Quarks in T´: The2 1 Framework

  19. 2  1 Quarks in T´: The2 1 Framework

  20. Citations C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008) S. Bar-Shalom and A. Rajaraman, Phys. Rev. D 77, 095011 (2008). arXiv:0711.3193 [hep-ph] S. Bar-Shalom, A. Rajaraman, D. Whiteson, FY, Phys. Rev. D 78, 033003 (2008). arXiv:0803.3795 [hep-ph] CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005). arXiv:hep-ph/0406184 M.C. Chen and S.F. King, arXiv:0903.0125 [hep-ph] M.C. Chen and K.T. Mahanthappa, arXiv:0904.1721 [hep-ph] V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Nucl. Phys. B 728, 121 (2005). arXiv:hep-ph/0507001 G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036 G. Engelhard, J.L. Feng, I. Galon, D. Sanford and FY, arXiv:0904.1415 [hep-ph] J.L. Feng, C.G. Lester, Y. Nir and Y. Shadmi, Phys. Rev. D 77, 076002 (2008) arXiv:0712.0674 [hep-ph]. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Nucl. Phys. B 775, 120 (2007) arXiv:hep-ph/0702194 P.H. Frampton and T.W. Kephart, Int. J. Mod. Phys. A 10, 4689 (1995). arXiv:hep-ph/9409330 T. Gherghetta and A. Pomarol, Nucl. Phys. B 586, 141 (2000). arXiv:hep-ph/0003129 Y. Grossman and M. Neubert, Phys. Lett. B 474, 361 (2000). arXiv:hep-ph/9912408 P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B 458, 79 (1999). arXiv:hep-ph/9904297 S.J. Huber and Q. Shafi, Phys. Lett. B 544, 295 (2002). arXiv:hep-ph/0205327 C.I. Low and R.R. Volkas, Phys. Rev. D 68, 033007 (2003). arXiv:hep-ph/0305243 E. Ma and G. Rajarasekaran, Phys. Rev. D 64, 113012 (2001). arXiv:hep-ph/0106291 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064 L. Randall and R. Sundrum, Phys. Rev. Lett 83, 3370 (1999). arXiv:hep-ph/9905221 L. Randall and R. Sundrum, Nucl. Phys. B 557, 79 (1999). arXiv:hep-th/9810155 T. Schwetz, M. Tortola and J.W.F. Valle, New J. Phys. 10, 113011 (2008). arXiv:0808.2016 [hep-ph]

More Related