1 / 12

The Flow of PMOS’s Mobility (Part2)

The Flow of PMOS’s Mobility (Part2). Student :光心君 Date : 2010/04/15. 推導 Poisson equation 為矩陣表示. Proof: 經整理變矩陣程式. V 3. V 1. 推廣. V 2. 推廣. A. V. Rho. V0=ARho  initial guess(V0=A -1 R). Poisson equation 的 Boundary Condition. Code:

claire
Download Presentation

The Flow of PMOS’s Mobility (Part2)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Flow of PMOS’s Mobility(Part2) Student:光心君 Date:2010/04/15

  2. 推導Poissonequation為矩陣表示 • Proof: • 經整理變矩陣程式 V3 V1 推廣 V2 推廣 A V Rho • V0=A\Rho initial guess(V0=A-1R)

  3. Poissonequation的Boundary Condition • Code: • A = zeros(N,N); % Matrix for 2nd differential operator • A(1,1)=1/dx0^2; %boundary condition Vsurface=Vs • A(N,N)=1/dx(N-1)^2; • Explain: • Initial Condition  V(1)=Vs , V(N)=0 • 1.V(1)=Vs 2.V(N)=0

  4. 推導Poissonequation為矩陣表示 • for j=2:N-1 • avgdx=(dx(j-1)+dx(j))/2;  avgdx=Δx • A(j,j-1) = 1/dx(j-1)/avgdx; A(j,j-1) = 1/ Δx2 • A(j,j) = -(1/avgdx)*(1/dx(j-1)+1/dx(j)); A(j,j)=-2/ Δx2 • A(j,j+1) = 1/dx(j)/avgdx;  A(j,j+1) = 1/ Δx2 • end; J=2 J=N-1

  5. 推導Poissonequation為矩陣表示 %****************CALCULATED PARAMETERS**************** • A(1,1)=1/dx0^2; %boundary condition Vsurface=Vs A(N,N)=1/dx(N-1)^2; %**************POISSON EQUATION SETUP***************************** • Rho(1)=Vs/dx0^2; %bondary condition on the surface Rho(N)=0; %bondary condition V(N)=0

  6. 推導Schrödingerequation為矩陣表示 From subprogram: shhole01R.m %**************************scale set up ***************************** • xscale = linspace(xstart,xend,N).'; % New scale cm dx0=(xend-xstart)/real(N); dx= dx0/au; % Mesh separation in a.u. au = 0.5262E-8; % atomic unit in cm(波耳氫原子半徑) dd=1/2/(dx^2); % (a.u.)^-2 • Xscalexstart~xend中有N個元素的行向量

  7. 推導Schrödingerequation為矩陣表示 • 找由1至N所對應的potential值以帶入薛丁格方程式 %**************potential set up***************************** V=zeros(N,1); % Potential in Hr(Hr = 27.212; % 1 Hartree in eV) for j=2:(N-1) V(j) = interp1(xscaleI,VI,xscale(j))/Hr; end V(1)=20; %boundary condition V(N)=20; %boundary condition • Interp1做一維的內插法 • HrHartreeenergy ,the atomic unit of energy.

  8. 推導Schrödingerequation為矩陣表示 • Time independent equation: • 其中H=,且 pf 推廣 V=∞ Ψ0=0 V=∞ ΨN+1=0 xstart xend

  9. 推導Schrödingerequation為矩陣表示 • 矩陣形式 %******** Schrodinger Equation *************** H = zeros(N,N);% light hole for j=2:(N-1) H(j,j) = V(j)+2*dd/m1; end H(N,N)=V(N)+2*dd/m1; H(1,1)=V(1)+2*dd/m1; for j=2:N H(j-1,j) = -dd/m1; H(j,j-1) = -dd/m1;  end 推廣

  10. 推導Schrödingerequation為矩陣表示 • 解波函數Ψ與E • [Y,D]=eig(H); % Eigen vectors(Y) and Eigen values(D) [lambda1,key1] =sort(diag(D)); %sort:以行為單位,將每一行的向量由小到大排列 Y1 = Y(:,key1);取key1行的一整列的元素 E1=lambda1*Hr+Ev1; • Y=eigenvector : [Ψ]N ×1(Ψ以行向量的方式儲存在矩陣Y裡) • D=eigenvalue : (Ei存放在矩陣D的對角元素)

  11. 計算hole density • 藉由Ψ去計算n(x) %**************** Calculating hole densities ****************** • for j=1:N hole density /cm2 p1(j)=Do1*k*T*log(1+exp((Ef-E1(j))/k/T)); %hole den in heavy p2(j)=Do2*k*T*log(1+exp((Ef-E2(j))/k/T)); %hole den in light end Do1 = md1*m0/3.1415/(hb)^2/6.24146E11; %density of state (#/eV/cm2) Do2 = md2*m0/3.1415/(hb)^2/6.24146E11; %density of state (#/eV/cm2) • for j=1:N jj=1:Nhole density at each valley /cm3 YY1(j,jj)=(Y1(j,jj))^2*p1(jj)/dx0; %hole den. (heavy band in #/cc) YY2(j,jj)=(Y2(j,jj))^2*p2(jj)/dx0; %hole den. (light band in #/cc)

  12. 計算濃度 for Quantum case • 求R:hole density /cm3 R(j) = R(j)+(YY1(j,jj)+YY2(j,jj)); • if xscale(j)>=xstart & xscale(j)<=xend; Nep(j) = interp1(xscaleO,R0,xscale(j)); else Nep(j)=+Nep0*exp(-beta*V0(j)); Nen=+ni^2./Nep(只考慮classicalcase) xstart=0.0; xend=fregion;

More Related